Math 542: Analysis of Variance and Regression Final exam (take-home)

○1 Ridge regression.

Consider the setup of ℓ_2 -regularized linear regression (a.k.a. Tikhonov's or ridge regression) discussed in the class. More precisely, the design vectors $\vec{x}_1, ..., \vec{x}_n \in \mathbb{R}^d$ $\vec{x}_1, ..., \vec{x}_n \in \mathbb{R}^d$ $\vec{x}_1, ..., \vec{x}_n \in \mathbb{R}^d$ are fixed and, as before,¹

$$
y_i = \langle \vec{x}_i, \theta^* \rangle + \xi_i, \quad i \in [n],
$$

where $\sigma > 0$ is known, $\xi_i \sim \mathcal{N}(0, 1)$ are i.i.d. noise realizations, and $\theta^* \in \mathbb{R}^d$ is unknown and to be estimated. As previously, we can rewrite the above identity in a compact matrix-vector form as

$$
Y = \mathbf{X}\theta^* + \xi \tag{1}
$$

where

$$
Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} \vec{x}_1^{\top} \\ \vdots \\ \vec{x}_n^{\top} \end{bmatrix} \in \mathbb{R}^{n \times d}.
$$

Now, let $\|\cdot\|$ be the usual ℓ_2 -norm (the square root of the sum of the squared entries of a vector). Define the empirical risk

$$
L_n(\theta) := \frac{1}{n} \sum_{i \in [n]} (y_i - \langle \vec{x}_i, \theta \rangle)^2 = \frac{1}{n} ||Y - \mathbf{X}\theta||^2
$$

and the population risk (with expectation taken only over ξ_i 's since \vec{x}_i 's are deterministic here):

$$
L(\theta) := \mathbb{E}_{\xi} L_n(\theta) = \frac{1}{n} ||\boldsymbol{X}(\theta - \theta^*)||^2 + \frac{d}{n}.
$$

Note that θ^* is a minimizer of $L(\cdot)$, and for any θ , the excess population risk is a quadratic form^{[2](#page-0-1)}

$$
L(\theta) - L(\theta^*) = \frac{1}{n} ||\mathbf{X}(\theta - \theta^*)||^2 = ||\theta - \theta^*||^2_{\mathbf{\Sigma}}
$$

with matrix $\Sigma := \frac{1}{n} \mathbf{X}^\top \mathbf{X}$. Generally speaking, Σ does not have to be full-rank, and so the associated to it "prediction norm" $\|\cdot\|_{\Sigma}$ might only be a seminorm, i.e. vanish for *nonzero* vectors; in particular, this is surely the case whenever $n < d$. In this problem, we do not assume that $n \geq d$.

• We are free to just ignore the constant term $\frac{d}{n}$ in the population risk. Can you explain why?

¹For simplicity, we assume that $\sigma = 1$ here, i.e. the noise is "standardized."

²We write Σ , rather than $\widehat{\Sigma}_n$, for simplicity. We can get away with this since the design is deterministic anyway.

Recall the ridge estimate considered in the class:^{[3](#page-1-0)}

$$
\widehat{\theta}_n^{\lambda} := \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \ L_n(\theta) + \lambda \|\theta\|^2 \tag{2}
$$

(Note that there is indeed a unique solution to this problem—why?) We shall bound its excess risk (working out some previously omitted details), then analyze a special regime of eigenvalue decrease.

1.1. Explicit form. Express $\widehat{\theta}_n^{\lambda}$ explicitly as a function of Y. Hint: in the unregularized case $(\lambda = 0)$ with $\Sigma \succ 0$, the estimate used Σ^{-1} which might not exist now—but $(\Sigma + \lambda I)^{-1}$ still does.

1.2. Unbiasedness. Consider the regularized population risk minimizer:

$$
\theta^{\lambda} := \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \ L(\theta) + \lambda \|\theta\|^2.
$$

Derive θ^{λ} in explicit form, and show that $\widehat{\theta}_n^{\lambda}$ is its unbiased estimate (a special fact for linear models).

1.3. Variance term. Show that

$$
\mathbb{E}\big[L(\widehat{\theta}_n^{\lambda})\big] - L(\theta^{\lambda}) \leqslant \frac{d_{\lambda}(\mathbf{\Sigma})}{n}
$$

where $d_{\lambda}(\Sigma) := d_{\lambda}(\Sigma) := \text{tr}(\Sigma \Sigma_{\lambda}^{-1})$ is called the number of degrees of freedom (at level λ); here

$$
\Sigma_\lambda:=\Sigma+\lambda I.
$$

Hint: use that $tr(Q^2) \leqslant tr(Q) \lambda_{\max}(Q)$ for any $Q \succeq 0$, but be ready to explain how to prove this.

1.4. Bias term, risk decomposition. Show that

$$
L(\theta^{\lambda}) - L(\theta^*) \le \lambda \|\theta^*\|^2 \tag{3}
$$

Combine this result with the previous one to bound the excess risk as follows:

$$
\mathbb{E}\left[L(\widehat{\theta}_n^{\lambda})\right] - L(\theta^*) \leqslant \frac{d_{\lambda}(\Sigma)}{n} + \lambda \|\theta^*\|^2. \tag{4}
$$

³We use a superscript to avoid possible confusion with a double subscript.

$*$ (2) Bias refinements in ridge regression.

2.1. Refinement for small λ . In fact, the bias bound [\(3\)](#page-1-1) is rather crude when λ is small. Identify the source of this the looseness and show the following improved bound:

$$
L(\theta^{\lambda}) - L(\theta^*) \le \lambda (\|\theta^*\|^2 - \|\theta^{\lambda}\|^2)
$$

= $\lambda \|\theta^*\|^2_{I-J_{\lambda}^2}$ where $J_{\lambda} := \Sigma \Sigma_{\lambda}^{-1}$.

Simplify the last bound, by slightly roughening it, to

$$
L(\theta^{\lambda}) - L(\theta^*) \leq 2\lambda^2 \|\theta^*\|_{\mathbf{\Sigma}_{\lambda}^{-1}}^2.
$$

Explain why this last bound is always at least as strong as $2\lambda \|\theta^*\|^2$, i.e. twice the bound in [\(3\)](#page-1-1).

Hint: note that Σ_{λ} commutes with Σ , so we can express all related traces and matrix norms explicitly in terms of λ and the eigenvalues $\lambda_1, ..., \lambda_d$ of Σ . E.g. for the degrees of freedom parameter:

$$
d_{\lambda}(\Sigma) = \sum_{k=1}^{d} \frac{\lambda_k}{\lambda_k + \lambda}.
$$

2.2. Refinement for large λ . Note that as $\lambda \to \infty$, the first term in the right-hand side of [\(4\)](#page-1-2) vanishes, but the bias term diverges. Clearly, this does not reflect what happens in reality: from [\(2\)](#page-1-3) we see directly that $\theta^{\lambda} \to 0$ and $\widehat{\theta}^{\lambda}_{n} \to 0$ almost surely as $\lambda \to \infty$, and both the the excess risk and the bias converge to $L(0) - L(\theta^*) = ||\theta^*||_{\Sigma^*}^2$. Show the following bound (valid for any $\lambda \in [0, \infty]$):

$$
L(\theta^{\lambda})-L(\theta^*)\leqslant \lambda^2\|\theta^*\|_{\textbf{\textit{J}}_{\lambda}\Sigma_{\lambda}^{-1}}^2.
$$

Observe that this bound is stronger than the one in 2.1, and I do not mean the factor of 2 here.

$*$ (3) Ridge regression in a nonparametric regime.

In the setup of Problem 1, consider the bound (4) from 1.4. Assume that d is very large (or even infinite, if you prefer), and the eigenvalues $\lambda_1, \lambda_2, ...$ of Σ decrease, for a given $\alpha \geq 1$, as

$$
\lambda_k = k^{-2\alpha}.
$$

Let also $\|\theta^*\| \leq r$. Under these assumptions, show that the nearly best choice of λ for given α, r, n is

$$
\lambda^* = c_{\alpha,r} n^{-\frac{2\alpha}{2\alpha+1}},
$$

which results in $d_{\lambda^*} = asd$ the resulting excess risk bound is

$$
\mathbb{E}[L(\widehat{\theta}_n^{\lambda^*})] - L(\theta^*) \leqslant C_{\alpha,r} n^{-\frac{2\alpha}{2\alpha+1}},
$$

where $c_{\alpha,r}$ and $C_{\alpha,r}$ depend only on α and r , but not on n .

Hint: split the series

$$
d_{\lambda}(\mathbf{\Sigma}) = \sum_{k=1}^{\infty} \frac{k^{-2\alpha}}{k^{-2\alpha} + \lambda}
$$

into two parts: the "bulk" with the terms of nearly the same magnitude, and the "tail" where they rapidly decrease. Estimate the "tail" by replacing summation with integration.

Discussion. This $n^{-\frac{2\alpha}{2\alpha+1}}$ convergence rate is, in fact, a common phenomenon in nonparametric functional regression;^{[4](#page-3-0)} two great texts on the topic are [\[Tsy09\]](#page-6-0) and [\[Joh15\]](#page-6-1) [\(available online\)](https://imjohnstone.su.domains//GE12-27-11.pdf). The larger is α , the smaller is the corresponding d_{λ^*} —the "effective dimension" of the parameter. In particular, $\alpha \to \infty$ corresponds to $d_{\lambda^*} = O(1)$ and the parametric $O(1/n)$ excess risk.^{[5](#page-3-1)} On the other hand, in the limit $\alpha \to 0$ we get no restriction of eigenvalues, and the bound becomes trivial.^{[6](#page-3-2)}

⁴Recall from the class that $k^{-2\alpha}$ is the rate of decrease for the Fourier coefficients of an α -differentiable function.

⁵As it turns out, when $\alpha \to \infty$ the bound does not depend on r as $\lim_{\alpha \to \infty} C_{\alpha,r} \equiv C$ for some numerical constant C.

⁶The assumption $\alpha \geq 1$ is technical; in fact, one may show that the results extend to $\alpha \geq 0$.

 (4) Polynomial regression. Linear regression can describe *seemingly* nonlinear dependencies. E.g., consider n noisy samples of unknown polynomial $p(t)$ of degree $\leq d-1$ at $t_1 \neq ... \neq t_n \in [0,1]$:

$$
y(t_i) = \underbrace{\sum_{j \in [d]} \theta_j^* \varphi_j(t_i)}_{p(t_i)} + \xi_i, \quad i \in [n],
$$
\n
$$
(5)
$$

where $\varphi_j(t) = t^{j-1}$, and $\theta_j^* \in \mathbb{R}^d$ is the corresponding coefficient in p. Clearly, this is [\(1\)](#page-0-2) with

$$
Y = \begin{bmatrix} y(t_1) \\ \vdots \\ y(t_n) \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} \varphi_1(t_1) & \varphi_2(t_1) & \dots & \varphi_d(t_1) \\ \vdots & \vdots & & \vdots \\ \varphi_1(t_n) & \varphi_2(t_n) & \dots & \varphi_d(t_n) \end{bmatrix} = \mathbf{V}_{n,d}(t_1, ..., t_n)
$$

where $V_{n,d}$ the rectangular Vandermonde matrix:

$$
\mathbf{V}_{n,d}(t_1,...,t_n) := \begin{bmatrix} 1 & t_1 & \cdots & t_1^{d-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_n & \cdots & t_n^{d-1} \end{bmatrix}.
$$

Also, $\mathbf{V}_n(t_1, ..., t_n) := \mathbf{V}_{n,n}(t_1, ..., t_n)$ is known as the square Vandermonde matrix (of order n).

4.1. Nondegeneracy. Show that $\text{rank}(\mathbf{V}_{n,d}(t_1, ..., t_n)) = d$ whenever $n \geq d$ and $t_1 \neq ... \neq t_n$.

Hint: I'm aware of two ways to solve this problem. One way is to first observe that it suffices to consider the square case $n = d$ (why?), and then prove the explicit formula

$$
\det(\mathbf{V}_n(t_1, ..., t_n)) = \prod_{1 \le i < j \le n} (t_i - t_j),
$$

whereby it follows that $\mathbf{V}_n(t_1, ..., t_n)$ is nonsingular if $t_1 \neq ... \neq t_n$ (and only in this case). The other way is to obtain a contradiction with the fundamental theorem of algebra (Gauss, 1799) in the form: "Any polynomial of degree d has $\leq d$ distinct complex roots."

4.2. Hilbert's matrix. Let $\Sigma_n := \frac{1}{n} \boldsymbol{X}^\top \boldsymbol{X}$ with $\boldsymbol{X} = \mathbf{V}_{n,d}(t_1, ..., t_n)$ as before, but now with

$$
t_i = \frac{i}{n}, \quad i \in [n]. \tag{6}
$$

Show that $\lim_{n\to\infty}\Sigma_n=\mathbf{H}_d$ entrywise, where \mathbf{H}_d is a matrix with entries $[\mathbf{H}_d]_{jk}=\frac{1}{j+k-1}$, that is

H^d = 1 1 2 1 3 1 d 1 2 1 3 . . . 1 3 1 d 1 2d−1 ,

called the Hilbert matrix of order d. Hint: don't forget the $\frac{1}{n}$ factor, which is also the grid step!

4.3. Now, assume that instead of being fixed, $t_1, ..., t_n$ are sampled i.i.d. from Uniform([0,1]). Argue that in this case, we are in the *random-design* linear regression setup, with H_d as the population covariance: $\mathbb{E}[\hat{\Sigma}_n] = \mathbf{H}_d$. (You don't need any more calculations on top of those in 4.2.)

4.4. Let again $t_1, ..., t_n$ be on the regular grid with step $\frac{1}{n}$, cf. [\(6\)](#page-4-0), and show that in this case,

$$
[\mathbf{H}_d]_{jk} \leqslant [\mathbf{\Sigma}_n]_{jk} \leqslant [\mathbf{H}_d]_{jk} + \frac{1}{n}
$$

in each entry. Hint: play with the sum when appoximating it with an integral.

[∗]○5 Eigenvalue bounds.

5.1. Absolute error. Show that

$$
\|\mathbf{\Sigma}_n - \mathbf{H}_d\| \leqslant \frac{d}{n},
$$

or: "all eigenvalues of $\Sigma_n - \mathbf{H}_d$ are $\leqslant \frac{d}{n}$ $\frac{d}{n}$ in absolute value." To this end, use the following result: **Theorem 1** (Gershgorin circle theorem). For any eigenvalue $\lambda(A)$ of a complex $d \times d$ matrix A,

$$
\exists j \in [d]: \quad |\lambda(A) - A_{jj}| \leqslant \sum_{k \neq j} |A_{jk}|.
$$

In words: "any eigenvalue must lie in at least one Gershgorin's disc centered at a diagonal entry of A, and with radius given by the sum of off-diagonal entries in the corresponding row (or column, since A and A^{\top} have the same eigenvalues)."

Gershgorin's theorem is the most basic tool to estimate eigenvalues in terms of the matrix entries (which, generally, is a hard nonlinear problem), and oftentimes the only one available.

5.2. Eigenvalue estimates. Bound the eigenvalues of H_d as follows (they must be positive why ?):

$$
\lambda_{\min}(\mathbf{H}_d) \lesssim \frac{\log(2d)}{d} \lesssim \lambda_{\max}(\mathbf{H}_d) \lesssim \log(2d).
$$

Here \leq hides a constant factor. (*Hint: trace is equal to the sum of eigenvalues*.) Observe that $\lambda_{\max}(\mathbf{H}_d) \geq 1$ (why?), and conclude that the condition number of \mathbf{H}_d is $\geq d/\log(2d)$.

5.3 Using the results of $5.1 - -5.2$, conclude that, neglecting the logarithmic factor, we need at least $n \gtrsim d^2$ to estimate $\lambda_{\min}(\mathbf{H}_d)$ by $\lambda_{\min}(\mathbf{\Sigma}_n)$ with a constant relative accuracy—say 10%—i.e. such that

$$
|\lambda_{\min}(\boldsymbol{\Sigma}_n) - \lambda_{\min}(\mathbf{H}_d)| \leqslant 0.1 \lambda_{\min}(\mathbf{H}_d).
$$

Discussion. This is a very loose analysis: say, it is known that $\lambda_{min}(\mathbf{H}_d)$ is exponentially small in d; thus, in reality we need a way larger n (i.e., finer grid) to approximate H_d with a constant accuracy. However, our analysis already gives something worse than $n \times d$ expected from Bernstein's inequality, and demonstrates that *regular grid* is a bad choice when having to deal with polynomials.

References

[Joh15] I. M. Johnstone. Gaussian estimation: Sequence and wavelet models. Unpublished manuscript, 2015.

[Tsy09] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.