
Math 542: Analysis of Variance and Regression

Final exam (take-home)

1○ Ridge regression.
Consider the setup of `2-regularized linear regression (a.k.a. Tikhonov’s or ridge regression)

discussed in the class. More precisely, the design vectors ~x1, ..., ~xn ∈ Rd are fixed and, as before,1

yi = 〈~xi, θ∗〉+ ξi, i ∈ [n],

where σ > 0 is known, ξi ∼ N (0, 1) are i.i.d. noise realizations, and θ∗ ∈ Rd is unknown and to be
estimated. As previously, we can rewrite the above identity in a compact matrix-vector form as

Y = Xθ∗ + ξ (1)

where

Y =

y1...
yn

 , X =

~x
>
1
...
~x>n

 ∈ Rn×d.
Now, let ‖ · ‖ be the usual `2-norm (the square root of the sum of the squared entries of a vector).
Define the empirical risk

Ln(θ) :=
1

n

∑
i∈[n]

(yi − 〈~xi, θ〉)2 =
1

n
‖Y −Xθ‖2

and the population risk (with expectation taken only over ξi’s since ~xi’s are deterministic here):

L(θ) := EξLn(θ) =
1

n
‖X(θ − θ∗)‖2 +

d

n
.

Note that θ∗ is a minimizer of L(·), and for any θ, the excess population risk is a quadratic form2

L(θ)− L(θ∗) =
1

n
‖X(θ − θ∗)‖2 = ‖θ − θ∗‖2Σ

with matrix Σ := 1
nX

>X. Generally speaking, Σ does not have to be full-rank, and so the
associated to it “prediction norm” ‖ · ‖Σ might only be a seminorm, i.e. vanish for nonzero vectors;
in particular, this is surely the case whenever n < d. In this problem, we do not assume that n > d.

• We are free to just ignore the constant term d
n in the population risk. Can you explain why?

1For simplicity, we assume that σ = 1 here, i.e. the noise is “standardized.”
2We write Σ, rather than Σ̂n, for simplicity. We can get away with this since the design is deterministic anyway.
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Recall the ridge estimate considered in the class:3

θ̂λn := argmin
θ∈Rd

Ln(θ) + λ‖θ‖2 (2)

(Note that there is indeed a unique solution to this problem—why?) We shall bound its excess risk
(working out some previously omitted details), then analyze a special regime of eigenvalue decrease.

1.1. Explicit form. Express θ̂λn explicitly as a function of Y . Hint: in the unregularized case
(λ = 0) with Σ � 0, the estimate used Σ−1 which might not exist now—but (Σ + λI)−1 still does.

1.2. Unbiasedness. Consider the regularized population risk minimizer:

θλ := argmin
θ∈Rd

L(θ) + λ‖θ‖2.

Derive θλ in explicit form, and show that θ̂λn is its unbiased estimate (a special fact for linear models).

1.3. Variance term. Show that

E
[
L(θ̂λn)

]
− L(θλ) 6

dλ(Σ)

n

where dλ(Σ) := dλ(Σ) := tr(ΣΣ−1λ ) is called the number of degrees of freedom (at level λ); here

Σλ := Σ + λI.

Hint: use that tr(Q2) 6 tr(Q)λmax(Q) for any Q � 0, but be ready to explain how to prove this.

1.4. Bias term, risk decomposition. Show that

L(θλ)− L(θ∗) 6 λ‖θ∗‖2 (3)

Combine this result with the previous one to bound the excess risk as follows:

E
[
L(θ̂λn)

]
− L(θ∗) 6

dλ(Σ)

n
+ λ‖θ∗‖2. (4)

3We use a superscript to avoid possible confusion with a double subscript.
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∗ 2○ Bias refinements in ridge regression.
2.1. Refinement for small λ. In fact, the bias bound (3) is rather crude when λ is small.

Identify the source of this the looseness and show the following improved bound:

L(θλ)− L(θ∗) 6 λ(‖θ∗‖2 − ‖θλ‖2)
= λ‖θ∗‖2

I−J2
λ

where Jλ := ΣΣ−1λ .

Simplify the last bound, by slightly roughening it, to

L(θλ)− L(θ∗) 6 2λ2‖θ∗‖2
Σ−1
λ

.

Explain why this last bound is always at least as strong as 2λ‖θ∗‖2, i.e. twice the bound in (3).
Hint: note that Σλ commutes with Σ, so we can express all related traces and matrix norms

explicitly in terms of λ and the eigenvalues λ1, ..., λd of Σ. E.g. for the degrees of freedom parameter:

dλ(Σ) =
d∑

k=1

λk
λk + λ

.

2.2. Refinement for large λ. Note that as λ→∞, the first term in the right-hand side of (4)
vanishes, but the bias term diverges. Clearly, this does not reflect what happens in reality: from (2)
we see directly that θλ → 0 and θ̂λn → 0 almost surely as λ→∞, and both the the excess risk and
the bias converge to L(0)− L(θ∗) = ‖θ∗‖2Σ. Show the following bound (valid for any λ ∈ [0,∞]):

L(θλ)− L(θ∗) 6 λ2‖θ∗‖2
JλΣ

−1
λ

.

Observe that this bound is stronger than the one in 2.1, and I do not mean the factor of 2 here.
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∗ 3○ Ridge regression in a nonparametric regime.
In the setup of Problem 1, consider the bound (4) from 1.4. Assume that d is very large (or

even infinite, if you prefer), and the eigenvalues λ1, λ2, ... of Σ decrease, for a given α > 1, as

λk = k−2α.

Let also ‖θ∗‖ 6 r. Under these assumptions, show that the nearly best choice of λ for given α, r, n is

λ∗ = cα,rn
− 2α

2α+1 ,

which results in dλ∗ = asd the resulting excess risk bound is

E[L(θ̂λ
∗
n )]− L(θ∗) 6 Cα,rn

− 2α
2α+1 ,

where cα,r and Cα,r depend only on α and r, but not on n.

Hint: split the series

dλ(Σ) =

∞∑
k=1

k−2α

k−2α + λ

into two parts: the “bulk” with the terms of nearly the same magnitude, and the “tail”
where they rapidly decrease. Estimate the “tail” by replacing summation with integration.

Discussion. This n−
2α

2α+1 convergence rate is, in fact, a common phenomenon in nonparametric
functional regression;4 two great texts on the topic are [Tsy09] and [Joh15] (available online). The
larger is α, the smaller is the corresponding dλ∗—the “effective dimension” of the parameter. In
particular, α→∞ corresponds to dλ∗ = O(1) and the parametric O(1/n) excess risk.5 On the other
hand, in the limit α→ 0 we get no restriction of eigenvalues, and the bound becomes trivial.6

4Recall from the class that k−2α is the rate of decrease for the Fourier coefficients of an α-differentiable function.
5As it turns out, when α→∞ the bound does not depend on r as limα→∞ Cα,r ≡ C for some numerical constant C.
6The assumption α > 1 is technical; in fact, one may show that the results extend to α > 0.
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4○ Polynomial regression. Linear regression can describe seemingly nonlinear dependencies.
E.g., consider n noisy samples of unknown polynomial p(t) of degree 6 d− 1 at t1 6= ... 6= tn ∈ [0, 1]:

y(ti) =
∑
j∈[d]

θ∗jϕj(ti)︸ ︷︷ ︸
p(ti)

+ξi, i ∈ [n], (5)

where ϕj(t) = tj−1, and θ∗j ∈ Rd is the corresponding coefficient in p. Clearly, this is (1) with

Y =

y(t1)
...

y(tn)

 , X =

ϕ1(t1) ϕ2(t1) . . . ϕd(t1)
...

...
...

ϕ1(tn) ϕ2(tn) . . . ϕd(tn)

 = Vn,d(t1, ..., tn)

where Vn,d the rectangular Vandermonde matrix:

Vn,d(t1, ..., tn) :=

1 t1 . . . td−11
...

...
...

1 tn . . . td−1n

 .
Also, Vn(t1, ..., tn) := Vn,n(t1, ..., tn) is known as the square Vandermonde matrix (of order n).

4.1. Nondegeneracy. Show that rank(Vn,d(t1, ..., tn)) = d whenever n > d and t1 6= ... 6= tn.

Hint: I’m aware of two ways to solve this problem. One way is to first observe that it
suffices to consider the square case n = d (why?), and then prove the explicit formula

det(Vn(t1, ..., tn)) =
∏

16i<j6n

(ti − tj),

whereby it follows that Vn(t1, ..., tn) is nonsingular if t1 6= ... 6= tn (and only in this
case). The other way is to obtain a contradiction with the fundamental theorem of algebra
(Gauss, 1799) in the form: ”Any polynomial of degree d has 6 d distinct complex roots.”

4.2. Hilbert’s matrix. Let Σn := 1
nX

>X with X = Vn,d(t1, ..., tn) as before, but now with

ti =
i

n
, i ∈ [n]. (6)

Show that limn→∞Σn = Hd entrywise, where Hd is a matrix with entries [Hd]jk = 1
j+k−1 , that is

Hd =



1 1
2

1
3

1
d

1
2

1
3

. .
.

1
3

. . . . .
.

. .
.

. .
. . . .

1
d

1
2d−1


,

called the Hilbert matrix of order d. Hint: don’t forget the 1
n factor, which is also the grid step!
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4.3. Now, assume that instead of being fixed, t1, ..., tn are sampled i.i.d. from Uniform([0, 1]).
Argue that in this case, we are in the random-design linear regression setup, with Hd as the
population covariance: E[Σ̂n] = Hd. (You don’t need any more calculations on top of those in 4.2.)

4.4. Let again t1, ..., tn be on the regular grid with step 1
n , cf. (6), and show that in this case,

[Hd]jk 6 [Σn]jk 6 [Hd]jk +
1

n

in each entry. Hint: play with the sum when appoximating it with an integral.

6



∗ 5○ Eigenvalue bounds.
5.1. Absolute error. Show that

‖Σn −Hd‖ 6
d

n
,

or: “all eigenvalues of Σn −Hd are 6 d
n in absolute value.” To this end, use the following result:

Theorem 1 (Gershgorin circle theorem). For any eigenvalue λ(A) of a complex d× d matrix A,

∃j ∈ [d] : |λ(A)−Ajj | 6
∑
k 6=j
|Ajk|.

In words: “any eigenvalue must lie in at least one Gershgorin’s disc centered at a diagonal entry
of A, and with radius given by the sum of off-diagonal entries in the corresponding row (or column,
since A and A> have the same eigenvalues).”

Gershgorin’s theorem is the most basic tool to estimate eigenvalues in terms of the matrix entries
(which, generally, is a hard nonlinear problem), and oftentimes the only one available.

5.2. Eigenvalue estimates. Bound the eigenvalues of Hd as follows (they must be positive—
why?):

λmin(Hd) .
log(2d)

d
. λmax(Hd) . log(2d).

Here . hides a constant factor. (Hint: trace is equal to the sum of eigenvalues.) Observe
that λmax(Hd) > 1 (why?), and conclude that the condition number of Hd is & d/ log(2d).

5.3 Using the results of 5.1 − −5.2, conclude that, neglecting the logarithmic factor, we need at
least n & d2 to estimate λmin(Hd) by λmin(Σn) with a constant relative accuracy—say 10%—i.e. such
that

|λmin(Σn)− λmin(Hd)| 6 0.1λmin(Hd).

Discussion. This is a very loose analysis: say, it is known that λmin(Hd) is exponentially small
in d; thus, in reality we need a way larger n (i.e., finer grid) to approximate Hd with a constant
accuracy. However, our analysis already gives something worse than n � d expected from Bernstein’s
inequality, and demonstrates that regular grid is a bad choice when having to deal with polynomials.
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