Math 542: Analysis of Variance and Regression
Final exam (take-home)

(D Ridge regression.
Consider the setup of ¢o-regularized linear regression (a.k.a. Tikhonov’s or ridge regression)
discussed in the class. More precisely, the design vectors 7, ..., Z, € R? are fized and, as before,!

Yi = <£179*> + 57?’ (&S [n]>

where o > 0 is known, & ~ N(0,1) are i.i.d. noise realizations, and 6* € R? is unknown and to be
estimated. As previously, we can rewrite the above identity in a compact matrix-vector form as

Y =X0"+¢ (1)

where

Y1 Ty

Y = , X = c ]Rnxd'

Un Zn
Now, let || - || be the usual o-norm (the square root of the sum of the squared entries of a vector).
Define the empirical risk

1 o, 1 )
Laf6) = = S (i — (@60 = ¥ — X0
i€[n]

and the population risk (with expectation taken only over ;’s since Z;’s are deterministic here):
1 wo . d
L(9) = EeL,(9) = — | X (6 — ") + =
n n
Note that §* is a minimizer of L(-), and for any 6, the excess population risk is a quadratic form?
L(6) — L(6%) = 2| X (0 — 0)]° = 16 — 6|12
(6) = L") = _[1X( =1 [

with matrix 3 := %X TX. Generally speaking, 3 does not have to be full-rank, and so the
associated to it “prediction norm” || - ||s might only be a seminorm, i.e. vanish for nonzero vectors;
in particular, this is surely the case whenever n < d. In this problem, we do not assume that n > d.

d

o We are free to just ignore the constant term 7 in the population risk. Can you explain why?

!For simplicity, we assume that o = 1 here, i.e. the noise is “standardized.”
2We write X, rather than X,,, for simplicity. We can get away with this since the design is deterministic anyway.



Recall the ridge estimate considered in the class:?

6 := argmin L, (0) + \||0|? (2)
0cRd

(Note that there is indeed a unique solution to this problem—why?) We shall bound its excess risk
(working out some previously omitted details), then analyze a special regime of eigenvalue decrease.

1.1. Explicit form. Express @’2 explicitly as a function of Y. Hint: in the unregularized case
(A =0) with = = 0, the estimate used =~ which might not exist now—but (X + N\~ still does.

1.2. Unbiasedness. Consider the regularized population risk minimizer:

0" := argmin L(#) + \||0]|>.
OeRd

Derive 6* in explicit form, and show that 52 is its unbiased estimate (a special fact for linear models).

1.3. Variance term. Show that

dr\(%)

E[L(6))] — L(6") <
where dy(E) := d\(E) := tr(EE]") is called the number of degrees of freedom (at level \); here
3y =3+ A\
Hint: use that tr(Q?) < tr(Q) Muax(Q) for any Q = 0, but be ready to explain how to prove this.
1.4. Bias term, risk decomposition. Show that
L(6") — L(6) < A6 (3)

Combine this result with the previous one to bound the excess risk as follows:

dr(2)

n

E[L(#))] — L(6%) < + A6 (4)

3We use a superscript to avoid possible confusion with a double subscript.



*(2) Bias refinements in ridge regression.
2.1. Refinement for small \. In fact, the bias bound (3) is rather crude when A is small.
Identify the source of this the looseness and show the following improved bound:

L(*) — L") < A(ll6*]* — [16}]1*)

= )\H9*||_2,_J§ where J, := X%

Simplify the last bound, by slightly roughening it, to
L(0*) = L(6%) < 222)16"[|3-.
A
Explain why this last bound is always at least as strong as 2)6*||2, i.e. twice the bound in (3).

Hint: note that 3 commutes with 3, so we can express all related traces and matriz norms
explicitly in terms of A and the eigenvalues A1, ..., A\g of 3. E.g. for the degrees of freedom parameter:

dr(X) = Zd: A
P A+ A

2.2. Refinement for large \. Note that as A — oo, the first term in the right-hand side of (4)
vanishes, but the bias term diverges. Clearly, this does not reflect what happens in reality: from (2)
we see directly that #* — 0 and @i — 0 almost surely as A — oo, and both the the excess risk and
the bias converge to L(0) — L(6*) = ||6*||%. Show the following bound (valid for any A € [0, o0]):

L) = L(O7) < 22073 .

Observe that this bound is stronger than the one in 2.1, and I do not mean the factor of 2 here.



*(3) Ridge regression in a nonparametric regime.
In the setup of Problem 1, consider the bound (4) from 1.4. Assume that d is very large (or
even infinite, if you prefer), and the eigenvalues A1, Ao, ... of 3 decrease, for a given o > 1, as

A\ = k2,

Let also ||#*|| < r. Under these assumptions, show that the nearly best choice of A for given a, 7, n is

% _ 2«
N =cqrn 2041,

which results in dy+ = asd the resulting excess risk bound is

2

BIL(B))] — L(0") < Cayn 251,
where ¢, and C,, depend only on « and r, but not on n.

Hint: split the series
et k,—?a

dr\(X) = Z 90 Ty
P k + A

into two parts: the “bulk” with the terms of nearly the same magnitude, and the “tail”
where they rapidly decrease. Estimate the “tail” by replacing summation with integration.

—_ 20‘ . . . .
Discussion. This n™ 2«+1 convergence rate is, in fact, a common phenomenon in nonparametric

functional regression;* two great texts on the topic are [Tsy09] and [Joh15] (available online). The
larger is «, the smaller is the corresponding dy«—the “effective dimension” of the parameter. In
particular, o — oo corresponds to dy« = O(1) and the parametric O(1/n) excess risk.” On the other
hand, in the limit o — 0 we get no restriction of eigenvalues, and the bound becomes trivial.’

4Recall from the class that k2% is the rate of decrease for the Fourier coefficients of an a-differentiable function.
5As it turns out, when av — 0o the bound does not depend on r as limg—oc Cao,» = C for some numerical constant C'.
5The assumption a > 1 is technical; in fact, one may show that the results extend to a > 0.


https://imjohnstone.su.domains//GE12-27-11.pdf

@ Polynomial regression. Linear regression can describe seemingly nonlinear dependencies.
E.g., consider n noisy samples of unknown polynomial p(t) of degree < d—1 at t; # ... # t, € [0, 1]:

y(t) =Y 0p;(t:) +&, i€ n], (5)
JEld]
e e
p(ti)

where p;(t) = /71, and 0r € R? is the corresponding coefficient in p. Clearly, this is (1) with

y(t1) e1(t1)  pa(t) ... a(t1)
Y = S, X = : : : =V, 4(t1,....tn)
y(tn) e1(tn) @2(tn) .. paltn)
where V,, 4 the rectangular Vandermonde matriz:
1t ... ¢
Vopa(ty,.oty) == |1 :
1 t, ... ti1

Also, Vi (t1, ..., tn) == Vi pn(t1, ..., t,) is known as the square Vandermonde matriz (of order n).

4.1. Nondegeneracy. Show that rank(V,, 4(t1,...,t,)) = d whenever n > d and t1 # ... # t,.

Hint: I'm aware of two ways to solve this problem. One way is to first observe that it
suffices to consider the square case n = d (why?), and then prove the explicit formula

det(Vi(tr,.ontn)) = [ i —t)),
1<i<j<n

whereby it follows that V,(t1,...,t,) is nonsingular if t; # ... # t, (and only in this
case). The other way is to obtain a contradiction with the fundamental theorem of algebra
(Gauss, 1799) in the form: ”Any polynomial of degree d has < d distinct complex roots.”

4.2. Hilbert’s matrix. Let X, := %XTX with X =V, 4(t1,...,t,) as before, but now with

) .
ti=—, i€[n] (6)
Show that lim,,~ %, = Hy entrywise, where Hy is a matrix with entries [Hyl;; = ﬂ%, that is
r 1 1 1]
L3 3 a
11
2 3
1
Hy=|? ;
1 _1
| d 2d—1 |

called the Hilbert matriz of order d. Hint: don’t forget the % factor, which is also the grid step!



4.3. Now, assume that instead of being fixed, ¢1,...,¢, are sampled i.i.d. from Uniform([0,1]).
Argue that in this case, we are in the random-design linear regression setup, with Hy; as the

A~

population covariance: E[3,] = Hy. (You don’t need any more calculations on top of those in 4.2.)
4.4. Let again t1, ..., t, be on the regular grid with step %, cf. (6), and show that in this case,

1

[Ha]jr < [Enljn < Halje +

in each entry. Hint: play with the sum when appoximating it with an integral.



*(5) Eigenvalue bounds.
5.1. Absolute error. Show that

i

135 — Hal| <

S

or: “all eigenvalues of X, — Hy are < % in absolute value.” To this end, use the following result:

Theorem 1 (Gershgorin circle theorem). For any eigenvalue A\(A) of a complex d x d matriz A,

Fjeld: IAA) = Ayl <) JAul.
K

In words: “any eigenvalue must lie in at least one Gershgorin’s disc centered at a diagonal entry
of A, and with radius given by the sum of off-diagonal entries in the corresponding row (or column,
since A and AT have the same eigenvalues).”

Gershgorin’s theorem is the most basic tool to estimate eigenvalues in terms of the matrix entries
(which, generally, is a hard nonlinear problem), and oftentimes the only one available.

5.2. Eigenvalue estimates. Bound the eigenvalues of H, as follows (they must be positive—
why?):
log(2d)
d

Here < hides a constant factor. (Hint: trace is equal to the sum of eigenvalues.) Observe

~

that Apax(Hg) > 1 (why?), and conclude that the condition number of Hy is 2 d/log(2d).

)\min (Hd) 5

S Amax(Hg) < log(2d).

5.3 Using the results of 5.1 — —5.2, conclude that, neglecting the logarithmic factor, we need at
least n > d? to estimate Amin(Hy) by Amin () with a constant relative accuracy—say 10%—i.e. such
that

|)\m1n(2n) - )\min(Hd)‘ < OlAmln(Hd)

Discussion. This is a very loose analysis: say, it is known that Ay, (Hy) is ezponentially small
in d; thus, in reality we need a way larger n (i.e., finer grid) to approximate Hy with a constant
accuracy. However, our analysis already gives something worse than n < d expected from Bernstein’s
inequality, and demonstrates that regular grid is a bad choice when having to deal with polynomials.
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