Math 542: Analysis of Variance and Regression Homework 1

due on Sunday, March 5 at 11:59 pm

Please submit electronically directly to Blackboard in a PDF file.

0^o (Warm-up: expectation and covariance for random vectors).

Let $X \in \mathbb{R}^d$ be a random vector with $\mathbb{E}[X] = \mu$ and covariance matrix $Cov(X) = \Sigma$. Show that:

- (a) For the second-moment matrix of X is $\mathbb{E}[\|X\|^2] = \mu \mu^\top + \Sigma$.
- (b) $Z := \Sigma^{-1/2}(X \mu)$ has zero mean and identity covariance I_d .
- (c) Find the mean, covariance matrix, and the second-moment matrix of $W := \Sigma^{-1/2} X$.
- (d) Assuming that $d > 1$ and $\mu \neq 0$, show that the eigenvalues of $I_d + \mu \mu^{\top}$ are $\|\mu\|^2 + 1$ and 1. What are the corresponding eigenvectors?

1^o (Fixed-design linear regression).

Now, consider the linear regression model we analyzed in class: observed are pairs (x_i, y_i) where

$$
y_i = x_i^{\top} \theta^* + \sigma \xi_i, \quad i \in \{1, ..., n\};
$$

the predictors (or covariates) x_i 's are deterministic (non-random), and $\theta^* \in \mathbb{R}^d$ is fixed, but unknown; finally, $\xi_i \sim \mathcal{N}(0, 1)$ are i.i.d. Recall that this can be equivalently written in a matrix-vector form:

$$
Y = X\theta^* + \sigma\xi \tag{1}
$$

where $Y, \xi \in \mathbb{R}^n$, and

$$
\boldsymbol{X} = \begin{bmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{bmatrix} \in \mathbb{R}^{n \times d}
$$

is the design matrix. Define $\mu^* := \mathbf{X}\theta^*$, the mean of Y. Assume that $n \geq d$, and X has full column rank, so that $X^{\top}X$ is invertible. Recall, from what we have seen in class, that $\widehat{\theta} := X^+Y$ and $\hat{\mu} = \mathbf{\Pi}_X Y$ are the least-squares estimates of θ^* and μ^* correspondingly; here

$$
\boldsymbol{X}^+ := (\boldsymbol{X}^\top\boldsymbol{X})^{-1}\boldsymbol{X}^\top
$$

is the *left pseudoinverse* of **X** (that is, $X^+X = I$), while

$$
\Pi_X := X(X^\top X)^{-1} X^\top
$$

= XX^+

is the projector on $Col(X)$, the column space of X.

Prediction:

- (a) Recap of in-class material: show that $\hat{\mu}$ is unbiased, and $Cov(\hat{\mu}) = \sigma^2 \mathbf{\Pi}_{\mathbf{X}}$. (You don't need to equive $\mathbf{f} \circ \mathbf{f} \circ \mathbf$ assume $\xi \sim \mathcal{N}(0, I_n)$ —only $\mathbb{E}[\xi] = 0$ and $Cov(\xi) = I_n$.) Conclude that $\mathbb{E}[\|\hat{\mu} - \mu^*\|^2] = \sigma^2 d$, and compare this with the mean-squared error $\mathbb{E}[\|Y - \mu^*\|]$ of Y—the "trivial estimate" of μ^* .
- (b) Using the previous result, show that for any fixed unit vector $u \in \mathbb{R}^n$ (i.e., such that $||u|| = 1$),

$$
\mathbb{E}[\langle u, \hat{\mu} - \mu^* \rangle] = 0 \quad \text{and} \quad \text{Var}(\langle u, \hat{\mu} - \mu^* \rangle) = \sigma^2 ||\mathbf{\Pi}_X u||^2 \leq \sigma^2.
$$

Give a geometric-statistical interpretation of these two identities (what is $\langle u, \hat{\mu} - \mu^* \rangle$?). Using the properties of multiprists Gaussian, show that $\langle u, \hat{\mu}, \hat{\mu} \rangle$, $\mathcal{N}(0, \sigma^2)$ with appropriate σ^2 the properties of multivariate Gaussian, show that $\langle u, \hat{\mu} - \mu^* \rangle \sim \mathcal{N}(0, \sigma_u^2)$ with appropriate σ_u^2 .

(c) Using (a) – (b) , show that $\frac{1}{\sigma^2} \|\widehat{\mu} - \mu^*\|^2 \sim \chi_d^2$. (*Hint: select d vectors* $u^{(1)}, ..., u^{(d)}$ appropriately.)

Estimation:

For the remaining part of this exercise, define $\Sigma = \frac{1}{n} \boldsymbol{X}^\top \boldsymbol{X}$. (The factor $\frac{1}{n}$ might look unwarranted here, but it will become natural in the context of random-design regression.)

- (d) Show that $\mathbb{E}[\hat{\theta}] = \theta^*$ and $\text{Cov}(\hat{\theta}) = \sigma^2(\mathbf{X}^\top \mathbf{X})^{-1} = \frac{\sigma^2}{n} \Sigma^{-1}$. Explain (in a few words) why $\hat{\theta}$ has a multivariate Gaussian distribution.
- (e) Reflect on the formula $Cov(\hat{\theta}) = \frac{\sigma^2}{n} \Sigma^{-1}$ assuming Σ is a diagonal matrix, i.e. $\Sigma = \Lambda$ with $\Lambda = \text{diag}(\lambda_1, ..., \lambda_d).$

In this case, $Var(\widehat{\theta}_i) = \frac{\sigma^2}{\lambda_i r}$ $\frac{\sigma^2}{\lambda_i n}$ for each coordinate $i \in \{1, ..., d\}$ —in particular, the smaller λ_i , the larger the error of estimating the correponding θ_i^* . (E.g., if $\lambda_1 = 0.01$ and $\lambda_2 = ... = \lambda_d = 1$, then $\text{Var}(\widehat{\theta}_1) = 100 \frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}$ but $\text{Var}(\widehat{\theta}_i) = \frac{\sigma^2}{n}$ $\frac{\tau^2}{n}$ for $i > 1$.) The next part of the problem explains this!

(f) Denote $\Sigma = \frac{1}{n} \mathbf{X}^\top \mathbf{X}$. I claim that the problem of estimating θ^ from "indirect" observations Y, cf. [\(1\)](#page-0-0), can be reformulated as estimating the same vector θ^* but from "direct" observations,

$$
\omega = \theta^* + \sigma \varepsilon,\tag{2}
$$

with "colored" noise $\varepsilon \sim \mathcal{N}(0, \frac{1}{n} \Sigma^{-1}).$

- (f.[1](#page-1-1)) Describe—rigorously—how to pass from (1) to (2) .¹
- (f.2) Verify that $\hat{\theta} = X^+Y$ is precisely ω , and is also the (trivial) least-squares estimate of θ^* from observations ω in [\(2\)](#page-1-0). (Hint: we can treat (2) as a specific case of [\(1\)](#page-0-0), can't we?)

2^o (Right tail bound for χ_d^2 , a.k.a. Bernstein's inequality).

Let $X \sim \chi^2_{2d}$ (chi-squared distribution with 2d degrees of freedom), that is $X = ||Z||^2 =$ $Z_1^2 + ... + Z_{2d}^2$ where $Z \sim \mathcal{N}(0, \mathbf{I}_d)$ (equivalently, $Z_i \sim \mathcal{N}(0, 1)$ are i.i.d.). Define $M_{2d}(\cdot)$ as the moment generating function (MGF) of $X \sim \chi^2_{2d}$, i.e.

$$
M_{2d}(t) := \mathbb{E}[e^{tX}], \quad t \in \mathbb{R};
$$

¹Model [\(2\)](#page-1-0) is called Gaussian sequence model (GSM). In fact, even in the case $\Sigma = I$ —trivial in our context—GSM gives rise to a rich theory as soon as θ^* is allowed to vary over some set $\Theta \subseteq \mathbb{R}^d$, instead of being fixed. This theory goes way beyond our course—see, e.g., the books https://imjohnstone.su.domains//GE_08_09_17.pdf and [\[Tsy09\]](#page-2-0).

in particular, $M_2(t) = \mathbb{E}\left[e^{t(Z_1^2 + Z_2^2)}\right]$. Our ultimate goal here is to prove that, with probability $\geq 1-\delta$,

$$
X - 2d \le \sqrt{Cd \log\left(\frac{1}{\delta}\right)} + c \log\left(\frac{1}{\delta}\right) \tag{3}
$$

for some numerical constants $C, c > 0$. This bound is, in fact, optimal (see, e.g., [\[LM00,](#page-2-1) Lemma 1]).

(i) Derive the explicit form of $M_2(t)$:

$$
M_2(t) = \frac{1}{1 - 2t}, \quad t < \frac{1}{2},
$$

and $M_2 = +\infty$ for $t \geqslant \frac{1}{2}$ $\frac{1}{2}$. (To take the integral, pass to polar coordinates $(z_1, z_2) \mapsto (r, \theta)$ with $r = \sqrt{z_1^2 + z_2^2}$ —and don't forget the Jacobian, which equals r.) Claim that, as a corollary,

$$
M_{2d}(t) = \frac{1}{(1-2t)^d}, \quad t < \frac{1}{2}.
$$

(ii) Using Chernoff's method, bound the tail function $\mathbb{P}(X > x)$, for any $x > 2d$, as follows:

$$
\mathbb{P}(X > x) = \inf_{t < \frac{1}{2}} \frac{e^{-tx}}{(1 - 2t)^d} = \exp\left(d \log\left(\frac{2d}{x}\right) - \frac{x - 2d}{2}\right).
$$

(Hint: it is convenient to take the logarithm, and use that $u \mapsto \log(u)$ on R is increasing.) Note that, in terms of the deviation $z = x - 2d > 0$ above 2d, this is equivalent to

$$
\mathbb{P}(X - 2d > z) = \exp\left(d\log\left(\frac{2d}{2d+z}\right) - \frac{z}{2}\right).
$$

*(iii) Bear with me: this part is a bit delicate, but we need it to reach the conclusion. Use that

$$
\log(u) \leqslant u - 1 \quad (\forall u \in \mathbb{R}),
$$

along with some simple algebra, to show that

$$
\mathbb{P}(X - 2d > z) \leqslant \begin{cases} \exp\left(-\frac{z^2}{8d}\right) & \text{for } 0 \leqslant z \leqslant 2d, \\ \exp\left(-\frac{z}{4}\right) & \text{for } z > 2d. \end{cases}
$$

It is also fine if you get some worse pair of constants $C > 8, c > 4$ (leading to a weaker bound). Finally, reformulating the last bound as

$$
\mathbb{P}(X - 2d > z) \le \exp\left(-\min\left\{\frac{z^2}{8d}, \frac{z}{4}\right\}\right)
$$

and letting $\mathbb{P}(X - 2d > z) = \delta$, "invert" the last inequality to get [\(3\)](#page-2-2) with $C = 8$ and $c = 4$ (or with worse constants if in *(iii)* you got a weaker bound). (*Hint:* max{ a, b } $\le a + b$ *for* $a, b \ge 0$.)

References

- [LM00] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. The Annals of Statistics, 28(5):1302–1338, 2000.
- [Tsy09] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.