Math 542: Analysis of Variance and Regression
Homework 1

due on Sunday, March 5 at 11:59 pm
Please submit electronically directly to Blackboard in a PDF file.

0° (Warm-up: expectation and covariance for random vectors).
Let X € R? be a random vector with E[X] = x and covariance matrix Cov(X) = X. Show that:

(a) For the second-moment matrix of X is E[||X|?] = up' + =.
(b »~1/2(X — 1) has zero mean and identity covariance I.

)
) Z

(c) Find the mean, covariance matrix, and the second-moment matrix of W := X~ 12x.
)

(d) Assuming that d > 1 and p # 0, show that the eigenvalues of Iy + pu' are ||u||> + 1 and 1.
What are the corresponding eigenvectors?

1¢ (Fixed-design linear regression).
Now, consider the linear regression model we analyzed in class: observed are pairs (z;,y;) where

yi=a] 0"+ 0, i€ {l,.n}

the predictors (or covariates) x;’s are deterministic (non-random), and #* € R is fixed, but unknown;
finally, & ~ N(0,1) are i.i.d. Recall that this can be equivalently written in a matrix-vector form:

Y = X0 + o€ (1)
where Y, € € R", and
T
L1
X=|:]|er™
.

n

is the design matrix. Define p* := X6* the mean of Y. Assume that n > d, and X has full
column rank, so that X T X is invertible. Recall, from what we have seen in class, that 6 := XY
and 1 = IIxY are the least-squares estimates of #* and p* correspondingly; here

Xt =XxX"x)'xT
is the left pseudoinverse of X (that is, X+ X = I), while

My =X(X'X)'x"'
=XX"

is the projector on Col(X), the column space of X.



Prediction:

(a) Recap of in-class material: show that /i is unbiased, and Cov(ji) = 0*ITx. (You don’t need to
assume & ~ N(0,I,)—only E[¢] = 0 and Cov(¢) = I,,.) Conclude that E[||z — u*||?] = o?d,
and compare this with the mean-squared error E[||Y — p*||] of Y—the “trivial estimate” of p*.

(b) Using the previous result, show that for any fixed unit vector u € R™ (i.e., such that ||u| = 1),
El(u,fi— )] =0 and Var((u,i - 1)) = 0| Txul2 < o2

Give a geometric-statistical interpretation of these two identities (what is (u, iz — p*)?). Using

the properties of multivariate Gaussian, show that (u, i — u*) ~ N(0,02) with appropriate o2.

(c) Using (a)—(b), show that U%HZZ—,LL*HQ ~ x2. (Hint: select d vectors uM), ..., u'D appropriately.)
Estimation:

For the remaining part of this exercise, define 3 = %X TX. (The factor % might look
unwarranted here, but it will become natural in the context of random-design regression.)

(d) Show that E[f] = 6* and Cov(d) = 02(X ' X)~! = %~ Explain (in a few words) why
has a multivariate Gaussian distribution.

-~

(e) Reflect on the formula Cov(0) = %22_1 assuming ¥ is a diagonal matrix, i.e. ¥ = A with

A = diag(A1, ..., Ag).

~

In this case, Var(f;) = )‘\’% for each coordinate i € {1, ..., d}—in particular, the smaller \;, the

larger the error of estimating the correponding 6;. (E.g., if \{ =0.01 and Ay = ... = \g =1,
then Var(6;) = 100%2 but Var(6;) = %2 for i > 1.) The next part of the problem explains this!

*(f) Denote & = 1X TX. Iclaim that the problem of estimating #* from “indirect” observations Y,
cf. (1), can be reformulated as estimating the same vector * but from “direct” observations,

w = 0" + oe, (2)
with “colored” noise ¢ ~ N'(0, 1371).

(f.1) Describe—rigorously—how to pass from (1) to (2).!

(f.2) Verify that f=X"Y is precisely w, and is also the (trivial) least-squares estimate of 6*
from observations w in (2). (Hint: we can treat (2) as a specific case of (1), can’t we?)

2° (Right tail bound for x?%, a.k.a. Bernstein’s inequality).

Let X ~ x3; (chi-squared distribution with 2d degrees of freedom), that is X = ||Z]]? =
Zi 4 ...+ Z3, where Z ~ N(0,14) (equivalently, Z; ~ N(0,1) are i.i.d.). Define Myy(-) as the
moment generating function (MGF) of X ~ x3,, i.e.

Mog(t) := E[e!X], teR;

"Model (2) is called Gaussian sequence model (GSM). In fact, even in the case 3 = I—trivial in our context—GSM
gives rise to a rich theory as soon as #* is allowed to vary over some set © C R, instead of being fixed. This theory
goes way beyond our course—see, e.g., the books https://imjohnstone.su.domains//GE_08_09_17.pdf and [Tsy09].


https://imjohnstone.su.domains//GE_08_09_17.pdf

in particular, Ms(t) = E [et(z i+73 )] . Our ultimate goal here is to prove that, with probability > 1—9,

X —2d < (/Cdlog (;) + clog (<1$> (3)

for some numerical constants C, ¢ > 0. This bound is, in fact, optimal (see, e.g., [LM00, Lemma 1]).

(1) Derive the explicit form of Ms(t):
1
1—2¢t 2’
and My = +oo for ¢t > % (To take the integral, pass to polar coordinates (z1,z2) — (r,0)
with r = y/2% + 25—and don’t forget the Jacobian, which equals r.) Claim that, as a corollary,

M>(t)

1 1
Maq(t) = a—2)? t<3

(77) Using Chernoff’s method, bound the tail function P(X > x), for any x > 2d, as follows:

et 2d x—2d
P(X =inf —— = dl =) - )
(X >0 = Il g eXp( g() 2 )

(Hint: it is convenient to take the logarithm, and use that u — log(u) on R is increasing.)
Note that, in terms of the deviation z = x — 2d > 0 above 2d, this is equivalent to

2d
P(X —2d > z) = exp (dlog <2d+> — ;) .
z

*(4i1) Bear with me: this part is a bit delicate, but we need it to reach the conclusion. Use that
log(u) <u—1 (Yue€R),

along with some simple algebra, to show that

2
exp <—Z> for 0 <z < 2d,
P(X —2d > z) < 8d

exp (—Z) for z > 2d.

It is also fine if you get some worse pair of constants C' > 8, ¢ > 4 (leading to a weaker bound).

Finally, reformulating the last bound as

P(X -2d>2z2)<e — min Z—Qi
S 8d’ 4

and letting P(X —2d > z) = §, “invert” the last inequality to get (3) with C' =8 and ¢ =4 (or
with worse constants if in (#77) you got a weaker bound). (Hint: max{a,b} < a+0b fora,b>0.)
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