
Math 542: Analysis of Variance and Regression

Homework 1

due on Sunday, March 5 at 11:59 pm

Please submit electronically directly to Blackboard in a PDF file.

0o (Warm-up: expectation and covariance for random vectors).
Let X ∈ Rd be a random vector with E[X] = µ and covariance matrix Cov(X) = Σ. Show that:

(a) For the second-moment matrix of X is E[‖X‖2] = µµ> + Σ.

(b) Z := Σ−1/2(X − µ) has zero mean and identity covariance Id.

(c) Find the mean, covariance matrix, and the second-moment matrix of W := Σ−1/2X.

(d) Assuming that d > 1 and µ 6= 0, show that the eigenvalues of Id + µµ> are ‖µ‖2 + 1 and 1.
What are the corresponding eigenvectors?

1o (Fixed-design linear regression).
Now, consider the linear regression model we analyzed in class: observed are pairs (xi, yi) where

yi = x>i θ
∗ + σξi, i ∈ {1, ..., n};

the predictors (or covariates) xi’s are deterministic (non-random), and θ∗ ∈ Rd is fixed, but unknown;
finally, ξi ∼ N (0, 1) are i.i.d. Recall that this can be equivalently written in a matrix-vector form:

Y = Xθ∗ + σξ (1)

where Y, ξ ∈ Rn, and

X =

x
>
1
...
x>n

 ∈ Rn×d
is the design matrix. Define µ∗ := Xθ∗, the mean of Y . Assume that n > d, and X has full
column rank, so that X>X is invertible. Recall, from what we have seen in class, that θ̂ := X+Y
and µ̂ = ΠXY are the least-squares estimates of θ∗ and µ∗ correspondingly; here

X+ := (X>X)−1X>

is the left pseudoinverse of X (that is, X+X = I), while

ΠX := X(X>X)−1X>

= XX+

is the projector on Col(X), the column space of X.
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Prediction:

(a) Recap of in-class material: show that µ̂ is unbiased, and Cov(µ̂) = σ2ΠX . (You don’t need to
assume ξ ∼ N (0, In)—only E[ξ] = 0 and Cov(ξ) = In.) Conclude that E[‖µ̂− µ∗‖2] = σ2d,
and compare this with the mean-squared error E[‖Y − µ∗‖] of Y—the “trivial estimate” of µ∗.

(b) Using the previous result, show that for any fixed unit vector u ∈ Rn (i.e., such that ‖u‖ = 1),

E[〈u, µ̂− µ∗〉] = 0 and Var(〈u, µ̂− µ∗〉) = σ2‖ΠXu‖2 6 σ2.

Give a geometric-statistical interpretation of these two identities (what is 〈u, µ̂− µ∗〉?). Using
the properties of multivariate Gaussian, show that 〈u, µ̂− µ∗〉 ∼ N (0, σ2u) with appropriate σ2u.

(c) Using (a)–(b), show that 1
σ2 ‖µ̂−µ∗‖2 ∼ χ2

d. (Hint: select d vectors u(1), ..., u(d) appropriately.)

Estimation:

For the remaining part of this exercise, define Σ = 1
nX

>X. (The factor 1
n might look

unwarranted here, but it will become natural in the context of random-design regression.)

(d) Show that E[θ̂] = θ∗ and Cov(θ̂) = σ2(X>X)−1 = σ2

n Σ−1. Explain (in a few words) why θ̂
has a multivariate Gaussian distribution.

(e) Reflect on the formula Cov(θ̂) = σ2

n Σ−1 assuming Σ is a diagonal matrix, i.e. Σ = Λ with

Λ = diag(λ1, ..., λd).

In this case, Var(θ̂i) = σ2

λin
for each coordinate i ∈ {1, ..., d}—in particular, the smaller λi, the

larger the error of estimating the correponding θ∗i . (E.g., if λ1 = 0.01 and λ2 = ... = λd = 1,

then Var(θ̂1) = 100σ
2

n but Var(θ̂i) = σ2

n for i > 1.) The next part of the problem explains this!

∗(f) Denote Σ = 1
nX

>X. I claim that the problem of estimating θ∗ from “indirect” observations Y ,
cf. (1), can be reformulated as estimating the same vector θ∗ but from “direct” observations,

ω = θ∗ + σε, (2)

with “colored” noise ε ∼ N (0, 1nΣ−1).

(f.1) Describe—rigorously—how to pass from (1) to (2).1

(f.2) Verify that θ̂ = X+Y is precisely ω, and is also the (trivial) least-squares estimate of θ∗

from observations ω in (2). (Hint: we can treat (2) as a specific case of (1), can’t we?)

2o (Right tail bound for χ2
d, a.k.a. Bernstein’s inequality).

Let X ∼ χ2
2d (chi-squared distribution with 2d degrees of freedom), that is X = ‖Z‖2 =

Z2
1 + ... + Z2

2d where Z ∼ N (0, Id) (equivalently, Zi ∼ N (0, 1) are i.i.d.). Define M2d(·) as the
moment generating function (MGF) of X ∼ χ2

2d, i.e.

M2d(t) := E[etX ], t ∈ R;

1Model (2) is called Gaussian sequence model (GSM). In fact, even in the case Σ = I—trivial in our context—GSM
gives rise to a rich theory as soon as θ∗ is allowed to vary over some set Θ ⊆ Rd, instead of being fixed. This theory
goes way beyond our course—see, e.g., the books https://imjohnstone.su.domains//GE_08_09_17.pdf and [Tsy09].
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in particular, M2(t) = E
[
et(Z

2
1+Z

2
2 )
]
. Our ultimate goal here is to prove that, with probability > 1−δ,

X − 2d 6

√
Cd log

(
1

δ

)
+ c log

(
1

δ

)
(3)

for some numerical constants C, c > 0. This bound is, in fact, optimal (see, e.g., [LM00, Lemma 1]).

(i) Derive the explicit form of M2(t):

M2(t) =
1

1− 2t
, t <

1

2
,

and M2 = +∞ for t > 1
2 . (To take the integral, pass to polar coordinates (z1, z2) 7→ (r, θ)

with r =
√
z21 + z22—and don’t forget the Jacobian, which equals r.) Claim that, as a corollary,

M2d(t) =
1

(1− 2t)d
, t <

1

2
.

(ii) Using Chernoff’s method, bound the tail function P(X > x), for any x > 2d, as follows:

P(X > x) = inf
t< 1

2

e−tx

(1− 2t)d
= exp

(
d log

(
2d

x

)
− x− 2d

2

)
.

(Hint: it is convenient to take the logarithm, and use that u 7→ log(u) on R is increasing.)
Note that, in terms of the deviation z = x− 2d > 0 above 2d, this is equivalent to

P(X − 2d > z) = exp

(
d log

(
2d

2d+ z

)
− z

2

)
.

∗(iii) Bear with me: this part is a bit delicate, but we need it to reach the conclusion. Use that

log(u) 6 u− 1 (∀u ∈ R),

along with some simple algebra, to show that

P(X − 2d > z) 6


exp

(
− z

2

8d

)
for 0 6 z 6 2d,

exp
(
−z

4

)
for z > 2d.

It is also fine if you get some worse pair of constants C > 8, c > 4 (leading to a weaker bound).

Finally, reformulating the last bound as

P(X − 2d > z) 6 exp

(
−min

{
z2

8d
,
z

4

})
and letting P(X−2d > z) = δ, “invert” the last inequality to get (3) with C = 8 and c = 4 (or
with worse constants if in (iii) you got a weaker bound). (Hint: max{a, b} 6 a+b for a, b > 0.)
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