Math 541b: Introduction to Mathematical Statistics Homework 4 (due on Mon 12/12)

Please submit electronically directly to Blackboard in a PDF file.

1^o (Continuation of 6^o from Homework 3: confidence intervals for the Bernoulli parameter via test inversion).

- 6. Inverting the just constructed size α test would give us a (1α) -level confidence set (using a theorem proved in class). Unfortunately, Λ_n , as a function of p_0 with given \hat{p}_n cannot be inverted *explicitly* (its inverse function can be obtained by solving a non-linear equation). Hence, the corresponding confidence sets are not explicit.
	- Check that the function $h_n(p) := \Lambda_n(p|\hat{p}_n)$ is strictly convex on $(0, 1)$, and $h_n(\hat{p}_n) = 0$. Conclude that the corresponding confidence set $C(X_{1:n})$ is a segment that contains \hat{p}_n (level sets of a convex function are convex). Which two equations define its borders?
	- Use a suitable Taylor expansion of $h(p)$ around \hat{p}_n , along with the result of item 4, to obtain an approximate $(1 - \alpha)$ -level confidence interval in the form $[\hat{p}_n - \delta_n, \hat{p}_n + \delta_n]$ with

$$
\delta_n = z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}},
$$

 $z_{1-\alpha/2}$ being a quantile of $\mathcal{N}(0, 1)$. Explain why this approximation is satisfactory (cf. 1).

2^o (Two-sample testing for the exponential distribution). Let $X_{1:n} := (X_1, ..., X_n)$ and $Y_{1:n} := (Y_1, ..., Y_n)$ be sampled i.i.d. from $\text{Exp}(\lambda)$ and $\text{Exp}(\mu)$ respectively, and independent from each other; recall that $\mathsf{Exp}(\lambda)$ has density $f_{\lambda}(z)\lambda e^{-\lambda z}\mathbb{1}\{z\geq 0\}$ with $\lambda > 0$. Assuming λ, μ unknown, consider testing

$$
H_0: \lambda = \mu
$$
 vs. $H_1: \lambda \neq \mu$.

Define $N := 2n$ and $Z_{1:N} := (X_{1:n}, Y_{1:n})$. Our final goal is to find a UMP unbiased size α test.

- 1. Write the density of $Z_{1:N}$ explicitly to show that this is an exponential family parametrized by $\theta = (\lambda, \mu) \in \mathbb{R}^2_+$. Is this parametrization a canonical one? Justify your answer, and write down some complete sufficient statistic $T(Z_{1:N}) = (T_1(Z_{1:N}), T_2(Z_{1:N}))$.
- 2. Now, pass to a canonical parameterization $\eta(\theta) = (\tau(\theta), \nu(\theta))$ where $\tau = \tau(\theta)$ and $\nu = \nu(\theta)$ are such that the hypotheses depend only on τ , but not on ν . (If the previously found parametrization already satisfies this requirement, I do not ask you to find yet another one.)
- 3. Using the parametrization $\eta(\lambda,\mu)$ you have just found:
- (i) Write down $V(Z_{1:N})$ and $U(Z_{1:N})$ —respectively, (complete) sufficient statistics for the boundary family and for the "conditioned" family $\mathbb{P}_{\tau}(Z_{1:N}|V=v)$ parametrized by τ .
- $(ii)^*$ Find the general form of a UMP unbiased test in each conditioned problem. To this end, show that the asymptotic distribution of $U|V = v$ under H_0 has density

$$
f_{U|V}(u|v) = \frac{1}{c_n v} \left(1 - \frac{u^2}{v^2}\right)^{n-1} 1\{|u| \le v\} \quad \text{with} \ \ c_n = \int_{-1}^1 \left(1 - t^2\right)^{n-1} dt.
$$

and use this to specify, for any given α and v, the test with size α .

Hint. You may find useful the following facts (no need to prove them):

(a) Exp(λ) is the same as Gamma $(1, \alpha)$, where Gamma (n, α) has density

$$
f_{n,\lambda}(z) = \lambda^n z^{n-1} e^{-\lambda z} \mathbb{1}\{z \ge 0\}
$$

for $n \in \mathbb{N}$ and $\lambda > 0$.

(b) If $T_1 \sim \text{Gamma}(n, \lambda)$ and $T_2 \sim \text{Gamma}(m, \lambda)$ are independent, then

 $T_1 + T_2 \sim \text{Gamma}(n + m, \lambda).$

- (c) The joint distribution of $W = (T_1 T_2, T_1 + T_2)$ can be derived from that of $T = (T_1, T_2)$, since $T \mapsto W(T)$ is a bijective linear map.
- (*iii*) Argue, as we did in the class, that the test in which v is replaced with the boundary-family sufficient statistic $V = V(Z_{1:N})$ is UMP unbiased (of its size—which depends on v) for the initial problem. You don't have to write a lot here—just give a brief explanation.

 3^o (Local behavior of f-divergences). In this exercise you are invited to show that fdivergence with a *strictly convex* function f locally behaves as the χ^2 -divergence. Namely, assume that $f : \mathbb{R}_{++} \to \mathbb{R}$ (where \mathbb{R}_{++} is the set of all positive reals) satisfies the following assumptions:

- $f(1) = 0$;
- uniformly bounded third derivative on \mathbb{R}_{++} , that is f''' exists on \mathbb{R}_{++} and $\sup_{r>0}|f'''(r)| < \infty$;
- f is strictly convex (and thus by the previous assumption $f''(r) > 0$ for any $r > 0$).

In fact, all common f-divergences, except the TV distance, satisfy these assumptions (including Hellinger, chi-squared, and Kullback-Leibler). Recall that the associated f -divergence between two distributions P, Q on the same space, with densities p, q with respest to a dominating measure μ , is

$$
D_f(P||Q) := \mathbb{E}_Q \left[f\left(\frac{dP}{dQ}\right) \right] = \int_{\mathcal{X}} f\left(r(x)\right) q(x) d\mu(x),
$$

where $r(x) := \frac{p(x)}{q(x)}$ is the likelihood ratio and X is the support of μ . Fix P and Q, and consider the "segment" between them, that is, the family of distributions $P_t := (1-t)Q + tP$ for $t \in [0,1]$ (in particular, $P_1 = P$ and $P_0 = Q$.

• Show that as $t \to 0$,

$$
D_f(P_t||Q) = (1 + o(1)) \frac{f''(1)}{2} \chi^2(P_t||Q)
$$

where $o(1) \to 0$ and $\chi^2(P||Q)$ is the chi-square divergence, i.e. $D_h(P||Q)$ with $h(r) = (1 - r)^2$.

• Check that $\chi^2(P_t||Q) = t^2 \chi^2(P||Q)$ and conclude that $D_f(P_t||Q)$ is locally quadratic in t.

Hint: Consider the 3rd-order Taylor expansion of $f(r)$ at $r = 1$. The 1st-order term must vanish.