Math 541b: Introduction to Mathematical Statistics Homework 3 (due on Fri 12/02)

Disclaimer: problem 1 is an important exercise in theory; problem 2 includes a calculus exercise; finally, problems 3 to 6 are especially relevant for the final exam.

Please submit electronically directly to Blackboard in a PDF file.

 1^{o} (Algebraic structure of exponential families). Consider a generic one-parameter exponential family, with density¹

$$p_{\theta}(x) = c(\theta) \exp(T(x)\theta)$$

with respect to some dominating measure $\mu(dx)$ supported on $\mathcal{X} \subseteq \mathbb{R}$. Prove the following results:

- 1. The canonical domain $\Theta := \{\theta \in \mathbb{R} : c(\theta) > 0\}$ is a convex set (i.e., a segment—since $\Theta \subseteq \mathbb{R}$). In other words, if $\theta_0, \theta_1 \in \Theta$, then also $\frac{1}{2}(\theta_0 + \theta_1) \in \Theta$.
- 2. The log-cumulant function $a(\theta) = -\log(c(\theta))$ is convex on its its domain Θ , i.e.: $\forall \theta_0, \theta_1 \in \Theta$,

 $a(\frac{1}{2}(\theta_0 + \theta_1)) \le \frac{1}{2}(a(\theta_0) + a(\theta_1)).$

You can either prove this directly, or use that convexity of $a(\cdot)$ on Θ is equivalent to having $a''(\theta) \ge 0 \ \forall \theta \in \Theta$, assuming $c(\theta)$ is smooth enough, and differentiate in θ under the integral.

3. Show that $a'(\theta) = \mathbb{E}_{\theta}[T(X)]$ and $a''(\theta) = \operatorname{Var}_{\theta}[T(X)]$ where $\mathbb{E}_{\theta}[\cdot]$ and $\operatorname{Var}_{\theta}[\cdot]$ are the expectation and variance over the distribution with density p_{θ} . You can skip item 2 if you do this—why?

2° (UMP test for the ratio of independent exponentially distributed r.v.'s). Revisiting the setup of problem 3° in Homework 1, consider Z = X/Y where $X \sim \mathsf{Exp}(\lambda)$ and $Y \sim \mathsf{Exp}(\mu)$ are independent. Recall that the p.d.f. of Z is

$$f_{\theta}(z) = \frac{\theta}{(z+\theta)^2}$$

where $\theta = \mu/\lambda$, and the corresponding c.d.f. is $F_{\theta}(z) = 1 - \frac{\theta}{\theta+z}$.

1. Is this family (parametrized by $\theta \in \mathbb{R}^+$) an exponential family? (Justify your answer.)

¹ We assume that the initial parametrization is already a canonical one, and the factor h(x) is merged into $\mu(dx)$.

2.* Consider testing $H_0: \theta \leq 1$ vs. $H_1: \theta > 1$ from the sample $Z_{1:n} = (Z_1, ..., Z_n)$ with the test

$$\varphi(z_{1:n}) = \begin{cases} 1 & \text{if } \prod_{i=1}^{n} (1+z_i) > e^s, \\ 0 & \text{otherwise,} \end{cases}$$

where $s \ge 0$ is the threshold parameter. Show that for any $s \ge 0$, this test is unbiased.

Hint: try to show that the power function $\beta_{\varphi}(\theta)$ is increasing. This is a nice exercise!

In what follows, let $s = s(\alpha)$ be such that the corresponding test has size α . Next we study it.

3. Show that $s = s(\alpha)$ is the α -quantile of the law $\mathsf{Gamma}(n,1)$ where the pdf of $\mathsf{Gamma}(k,\lambda)$ is

$$f_{k,\lambda}(u) = \frac{\lambda^k}{(k-1)!} u^{k-1} e^{-\lambda u}, \quad u \ge 0.$$

- (i) Derive the distribution of $U_i = \log(1 + Z_i)$ under $\theta = 1$. (*Hint: when transforming a random variable, it is often more convenient to think in terms of cdf's rather than pdf's.*)
- (ii)* Show that the sum of n independent r.v.'s, each distributed as $Exp(\lambda)$, is $Gamma(n, \lambda)$.
- (iii) Conclude by rewriting $\varphi(Z_{1:n})$ appropriately and using the previous results.
- 4. Using CLT, find an approximation of $s(\alpha)$ in terms of an $\mathcal{N}(0,1)$ quantile when $n \to \infty$.

3° (Student's *t*-test is UMP unbiased for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ in the full Gaussian family.) In this problem we shall derive the UMP unbiased test for testing

$$H_0: \mu = \mu_0 \text{ against } H_1: \mu \neq \mu_0$$

observing an i.i.d. sample $X_{1:n} := (X_1, ..., X_n)$ from $\mathcal{N}(\mu, \sigma^2)$ with unknown variance.² The test will be derived via the conditioning method.

- 1. Without loss of generality we can assume that $\mu_0 = 0$ (*why?*). Show that (U, V) with $U := \sum_{i=1}^n X_i$ and $V := \sum_{i=1}^n X_i^2$ is a complete sufficient statistic for the whole family.
- 2. Explain why it suffices to consider tests depending only on (U, V) (rather than on $X_{1:n}$).
- 3. Find the boundary family and show that V is a complete sufficient statistic for that family. (You can use the general result for exponential families stated in the class without a proof.)
- 4. Next, we shall consider a new, possibly simpler, problem by conditioning on the value of V:

$$\begin{aligned}
H'_0(v) : U|\{V=v\} \sim \mathbb{P}_{\tau}(v) \quad \tau \in \mathcal{T}_0 \quad [\subseteq \mathbb{R}] \\
H'_1(v) : U|\{V=v\} \sim \mathbb{P}_{\tau}(v) \quad \tau \in \mathcal{T}_0^c \quad [= \mathbb{R} \setminus \mathcal{T}_0].
\end{aligned} \tag{1}$$

Here $(\mathbb{P}_{\tau})_{\tau \in \mathbb{R}}$ is the "induced" family of conditional distributions of $U|\{V = v\}$ with a *one-dimensional* parameter $\tau = \tau(\mu, \sigma^2) \in \mathbb{R}$; the set \mathcal{T}_0 corresponds to the null H_0 as follows:

$$\mathcal{T}_0 := \{ \tau(0, \sigma^2) \text{ for } \sigma^2 \in \mathbb{R}_{++} \}.$$

²This is a companion problem to the one considered in the class, where we tested (one-sided) hypotheses about σ^2 .

As we shall see next, this "conditioned" problem is easy because the map $\tau(\mu, \sigma^2)$ is such that $\tau(0, \sigma^2)$ does not depend on σ^2 , so \mathcal{T}_0 is a singleton, and $H'_0(v)$ is a simple hypothesis.

Before delving into analysis, explain why finding a UMP unbiased test of size α for every such problem (for each v > 0) would give a solution to the initial problem. (Appeal to the general results we proved in class about the connections between the UMP unbiased, UMP similar on the boundary (SOB), and UMP Neyman-structured (NS) size α tests.)

5. Now we analyze the conditioned problem. Show that the joint density of (U, V) is of the form

$$p_{U,V}(u,v) = g(\tau,\nu) \exp\left(\tau u + \nu v\right) h(u,v)$$

for some functions $g(\tau, \nu)$ and h(u, v) (that are not important), where $\tau = \tau(\mu, \sigma^2)$, $\nu = \nu(\mu, \sigma^2)$ is the canonical parametrization of the corresponding (2-parameter) exponential family. Write down τ and ν explicitly in terms of μ, σ^2 .

6. Derive, from the above, that the corresponding family of conditional densities has the form

$$p_{U|V}(u|v) = \widetilde{g}_v(\tau) \exp(\tau u) h_v(u)$$

for some functions $\tilde{g}_v(\cdot), \tilde{h}_v(\cdot)$ that might depend on v (their form is not important), i.e. they form a 1-parameter exponential family with canonical parameter $\tau = \tau(\mu, \sigma^2)$. From the explicit form of $\tau(\mu, \sigma^2)$ conclude that the conditioned null hypothesis $H'_0(v)$ is simple, i.e., $\mathcal{T}_0 = \{\tau_0\}$ for some τ_0 .

7. Conclude, from the general result on the form of a UMP unbiased test for a 1-parameter exponential family, that a UMP unbiased test of level α for the conditioned problem (1) reads

$$\phi^*(U,V) = \begin{cases} 1, & |U| > k(V), \\ 0, & |U| < k(V) \end{cases}$$
(2)

for k(V) defined by the condition $\mathbb{E}_{\tau=\tau_0}[\phi^*(U,V)|V] = \alpha$ (a.s. over V).

- 8. Finally, we would like to reformulate test (2) such as the threshold does *not* depend on V.
 - (i) First, observe that

$$|U| > k(V) \Longleftrightarrow \frac{|U|}{\sqrt{V}} > k' := \frac{k(V, \alpha)}{\sqrt{V}}$$

and $\frac{U}{\sqrt{V}}$ is independent from V when $\mu = 0$ (i.e., under the null). (Justify this!). Conclude that we can select $k' = k'(\alpha)$ independently of V.

(ii) Show that the just obtained test

$$\phi(U,V) = \mathbb{1}\left\{\frac{|U|}{\sqrt{V}} > k'(\alpha)\right\}$$

can, in fact, be expressed in the form

$$\phi(U,V) = \mathbb{1}\left\{\frac{|U|}{\sqrt{nS^2}} > \widetilde{k}(\alpha)\right\}$$

where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is the familiar unbiased estimate of σ^2 . *Hint:* express $\frac{|U|}{\sqrt{nS^2}}$ as $\psi(\frac{|U|}{\sqrt{V}})$ for some one-to-one function $\psi(\cdot)$; then, clearly, we can take $\tilde{k}(\alpha) := \psi(k'(\alpha))$.

(iii) Using the properties of the standard (multivariate) Gaussian distribution $\mathcal{N}(0, I)$, show that $W = \frac{U}{\sqrt{nS^2}}$ has the Student distribution with n-1 degrees of freedom under H_0 . (By definition, this is the law of $\frac{Z}{Y}$ where $Z \sim \mathcal{N}(0, 1)$, $Y \sim \chi^2_{n-1}$, and Z, Y are *independent*.) Express $\tilde{k}(\alpha)$ in terms of the corresponding quantile (don't forget about the abs. value).

4° (Permutation test). Let $X_1, ..., X_n, Y_1, ..., Y_m$ be a sequence of random variables. Find the permutation test for testing

 $H_0: X_1, ..., X_n, Y_1, ..., Y_m$ are i.i.d.

against the alternative

 $H_1: X_1, ..., X_n, Y_1, ..., Y_m$ are independent; $X_1, ..., X_n \sim \mathsf{Poisson}(\lambda), Y_1, ..., Y_m \sim \mathsf{Poisson}(\mu)$ with $\lambda > \mu > 0$.

5° (Likelihood ratio test for Unif([0, θ])). Let $X_1, ..., X_n$ be an i.i.d. sample from the uniform distribution Unif([0, θ]) with $\theta > 0$. We test $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ for some (known) θ_0 .

- 1. Derive the likelihood ratio test for this problem.
- 2. Find the distribution of the LRT statistic.
- 3. In few words, explain why the χ^2 asymptotics derived in class does not apply here.

6° (Likelihood ratio test for the Bernoulli parameter). Let $X_i \sim B(p)$ (Bernoulli distribution) with success probability $p \in (0, 1)$ and let $X_{1:n} = (X_1, ..., X_n)$ be an i.i.d. sample. Denote $f_p(x)$ the corresponding p.m.f. (with $x \in \{0, 1\}$). The sample average $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is a reasonable point estimate of p, converging to p in almost surely by the strong law of large numbers.

- 1. Derive \hat{p}_n as the MLE of p. What can be said about the *rate* of convergence of \hat{p}_n to p in terms of n? (Appeal to the asymptotic result about the asymptotics of MLE in regular families.)
- 2. Express the family of distributions $\{B(p), p \in (0,1)\}$ as a full exponential family with $\Theta \subseteq \mathbb{R}^1$.
- 3. Now, consider testing $H_0(p_0) : p = p_0$ against $H_1(p_0) : p \neq p_0$ for some fixed $p_0 \in (0, 1)$. Derive an explicit expression for the likelihood ratio test (LRT) statistic

$$\Lambda_n(p_0|\hat{p}_n) := n(L_n(\hat{p}_n) - L_n(p_0)),$$

where $L_n(p) = \frac{1}{n} \sum_{i=1}^n \log f_p(X_i)$ is the empirical log-likelihood, in terms of \hat{p}_n and p_0 .

4. Use the theorem about the asymptotic distribution of $2\Lambda_n$ stated in class to select the threshold that gives a test with asymptotic size α . Express the threshold in terms of a quantile of $\mathcal{N}(0, 1)$.