Math 541b: Introduction to Mathematical Statistics Homework 2 (due on Wed 11/16)

Please submit electronically directly to Blackboard in a PDF file.

1° (Neyman-Pearson lemma for discrete distributions via randomization). Assume that we would like to test $H_0 : X \sim P$ against $H_1 : X \sim Q$, where P and Q are two discrete distributions on \mathbb{R} with common support \mathcal{X} (for simplicity assume that there is a finite number m of possible outcomes). Let p and q be the corresponding p.m.f.'s. Let $r(x) := \frac{q(x)}{p(x)}$ on \mathcal{X} , and consider the following test parametrized by $0 \le k \le \infty$ and $0 \le \gamma \le 1$:

$$\phi(x) = \begin{cases} 1, & r(x) > k, \\ \gamma, & r(x) = k, \\ 0, & r(x) < k. \end{cases}$$

- (i) Show that for any $\alpha \in (0, 1)$ one can select $k = k(\alpha)$ and $\gamma = \gamma(\alpha)$ such that $\mathbb{E}_P[\phi(x)] = \alpha$ (i.e., the test has size α).
- (ii) Show that any such selection results in a test $\phi^*(x)$ which has the maximal power among all tests of level α . (Note that in our setup the power of a test $\varphi(\cdot)$ is $\beta_{\varphi} = \mathbb{E}_Q[\varphi(x)]$.)
- (iii) Assuming $k \ge 1$, show that $\phi^*(x)$ is unbiased: $\beta_{\phi^*} \ge \alpha$, and moreover $\beta_{\phi^*} > \alpha$ unless P = Q.

2° (Monotone likelihood ratio). Assume there is a set with N items, of which D are defective. One randomly selects n < N items (i.e., they are sampled from N items without replacement) and shows them to you. You know N and n but not D. Let X be the number of defective items among those observed, and let $p_D(x)$ be the corresponding family of p.m.f.'s parametrized by D (and supported on $\mathcal{X} = \{0, 1, ..., \min\{n, D\}\}$). Find $p_D(x)$ and show that this is an MLR family with respect to T(X) = X.

3° (Simple null against a composite alternative in an exponential family). Let $X_{1:n} := (X_1, ..., X_n)$ be an i.i.d. sample with $X \sim \mathcal{N}(0, \sigma^2)$ for each $i \in [n] := \{1, 2, ..., n\}$. Given $\sigma_0^2 > 0$, find the (asymptotically) UMP unbiased test of size α for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$. Use the normal approximation of χ_n^2 (Chi-squared distribution) via CLT and a characterization of the UMP unbiased test in an exponential family given in the class (you are not required to prove it).

Hint 1: Express $\mathcal{N}(0, \sigma^2)$ as an exponential family with a canonical parametrization.

Hint 2: Recall that the test must satisfy two conditions: its size is α , and $\mathbb{E}_0[T\phi(T)] = \mathbb{E}_0[T]\alpha$. where $\mathbb{E}_0[\cdot]$ its expectation under the null. Try to find a form of the test for which the second condition holds "automatically" in the CLT limit $n \to \infty$, regardless of α . The key word is "symmetry." 4° (Bayes-optimal test). Let $\mathcal{P} := \{P_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^k\}$ be a family of distributions supported on $\mathcal{X} \subseteq \mathbb{R}^d$, and consider the general problem of testing $H_0 : \theta \in \Theta_0$ against $H_1 : \theta \in \Theta_1$, where Θ_0 and Θ_1 are disjoint and $\Theta = \Theta_0 \cup \Theta_1$. Let P_{θ} have the density $p_{\theta}(x)$ with respect to the Lebesgue measure on \mathbb{R}^d , i.e., a p.d.f. We are also given a *prior* Π on Θ – a distribution supported on Θ with density $\pi(\theta)$, which reflects our "a priori guess" about the actual P_{θ} generating X.

Definition 1. The average risk of a test $\phi(x)$ with respect to Π is defined as the sum of errors of both types averaged over $\theta \sim \Pi$:

$$R_{\Pi}(\phi) := \int_{\Theta_0} \int_{\mathcal{X}} \phi(x) p_{\theta}(x) dx \cdot \pi(\theta) d\theta + \int_{\Theta_1} \int_{\mathcal{X}} (1 - \phi(x)) p_{\theta}(x) dx \cdot \pi(\theta) d\theta.$$

Any test minimizing R_{Π} is called Bayes-optimal, and its average risk is called the Bayes risk (for Π).

(i) Show that the following test is Bayes-optimal:

$$\phi_{\Pi}(x) = \begin{cases} 1, & \Pi(\Theta_1 | X = x) \ge \Pi(\Theta_0 | X = x), \\ 0, & \Pi(\Theta_1 | X = x) < \Pi(\Theta_0 | X = x), \end{cases}$$

where $\Pi(\Theta_1|X=x)$ is the posterior probability of Θ_1 if X=x is observed (similarly for Θ_0).¹

(ii) Show that for any choice of prior Π and test $\phi(\cdot)$, $R_{\Pi}(\phi)$ lower-bounds the worst-case risk of ϕ :

$$\bar{R}(\phi) = \sup_{\theta \in \Theta} \left\{ \mathbb{1}[\theta \in \Theta_0] \cdot \int_{\mathcal{X}} \phi(x) p_{\theta}(x) dx + \mathbb{1}[\theta \in \Theta_1] \cdot \int_{\mathcal{X}} (1 - \phi(x)) p_{\theta}(x) dx \right\}$$

This is useful because in composite testing problems (i.e., when Θ_0, Θ_1 are not singletons), worst-case risk is usually hard to evaluate precisely; however, if the prior Π is chosen reasonably, the Bayes risk will be close to $\overline{R}(\phi)$. How would you choose a prior? (This is not evaluated.)

(iii) Let $\bar{\phi}$ be any test minimizing $\bar{R}(\phi)$. Such test is called *minimax (or worst-case) optimal*, and $\bar{R}(\bar{\phi})$ is called the *minimax risk*.

Using the results of (ii), conclude that the minimax risk is lower-bounded by the Bayes risk.

5° (Confidence-boosting via voting). Let $X_1, ..., X_n$ be an i.i.d. sample from $\mathbb{P}_{\theta}, \theta \in \Theta$. Assume also that n = mk for some $m, k \in \mathbb{N}$, and there is a deterministic test $\phi(x_{1:k})$ that, using k observations, distinguishes between the two hypotheses H_0, H_1^2 with confidence 2/3, that is

$$\max\left\{\sup_{\theta\in\Theta_0} \mathbb{E}_{\theta}[\phi(X_{1:k})], \sup_{\theta\in\Theta_1} \mathbb{E}_{\theta}[1-\phi(X_{1:k})]\right\} \le \frac{1}{3}.$$

Now, consider the following simple procedure:

1. Split $X_{1:n}$ into *m* batches $X^{(1)}, ..., X^{(m)}$ of *k* observations each, i.e. $X^{(j)} := X_{k(j-1)+1:k(j-1)+k}$.

¹Note that, in fact, we have $\Pi(\Theta_0|X=x) + \Pi(\Theta_1|X=x) = \Pi(\Theta) = 1$, if Π is a probability measure; however, the results of this exercise are preserved even when Π is improper (that is $\Pi(\Theta) \neq 1$), and in particular when $\Pi(\Theta) = +\infty$.

²Corresponding to some partition $\Theta = \Theta_0 \sqcup \Theta_1$, but this is not important in the context of this problem.

2. Let $Z_j := \phi(X^{(j)})$, and consider the test

$$\varphi = \varphi(X_{1:n}) = \mathbb{1} \left[\sum_{j \in [m]} Z_j \ge \frac{m}{2} \right]$$

—in other words, accept/reject H_0 by aggregating the "basic" tests via the majority-vote rule.

(i) Working with the normal approximation for the binomial distribution (neglecting the error of this approximation), and using that $\mathbb{P}[U \ge u] \le e^{\frac{-u^2}{2}}$ where $U \sim \mathcal{N}(0, 1)$, show the following:

$$\operatorname{Risk}_m(\varphi) \lesssim e^{-cm}.$$

Here c > 0 is a constant; $\operatorname{Risk}_m(\varphi)$ is the worst-case error (of either type) for test $\varphi(X_{1:n})$ with n = km; finally, \leq "hides" the CLT approximation in the following sense: have an actual inequality, with " \leq ", if the distribution of the appropriate asymptotically normal statistic (converging to to $\mathcal{N}(0,1)$ by CLT) is replaced with $\mathcal{N}(0,1)$.³

(ii) Your next task is to show that the above bound (perhaps with some other c > 0) holds in finite sample and with \leq instead of \leq . To this end, assuming w.l.o.g. that m is even, note that

$$\operatorname{Risk}_{m}(\varphi) \leq \sum_{j=m/2}^{m} \binom{m}{j} \left(\frac{1}{3}\right)^{j} \left(\frac{2}{3}\right)^{m-j} < \left(\frac{m}{2}+1\right) \binom{m}{m/2} \left(\frac{1}{3}\right)^{m/2} \left(\frac{2}{3}\right)^{m/2}$$

and upper-bound the right-hand side with e^{-cm} .

(iii) Finally, show that we will get the same result in (*ii*) if, instead of 1/3, the "basic" test makes an error with probability at most $\delta < 1/2$; the only difference is that c will now depend on δ .

³Note that this does not suffice to argue that, say, $\operatorname{Risk}_{m}(\varphi)e^{cm} \to \operatorname{const}$ as $n \to \infty$. Could you explain why?