
Math 541b: Introduction to Mathematical Statistics

Homework 2 (due on Wed 11/16)

Please submit electronically directly to Blackboard in a PDF file.

1o (Neyman-Pearson lemma for discrete distributions via randomization). Assume
that we would like to test H0 : X ∼ P against H1 : X ∼ Q, where P and Q are two discrete
distributions on R with common support X (for simplicity assume that there is a finite number m of

possible outcomes). Let p and q be the corresponding p.m.f.’s. Let r(x) := q(x)
p(x) on X , and consider

the following test parametrized by 0 ≤ k ≤ ∞ and 0 ≤ γ ≤ 1:

φ(x) =


1, r(x) > k,

γ, r(x) = k,

0, r(x) < k.

(i) Show that for any α ∈ (0, 1) one can select k = k(α) and γ = γ(α) such that EP [φ(x)] = α
(i.e., the test has size α).

(ii) Show that any such selection results in a test φ∗(x) which has the maximal power among all
tests of level α. (Note that in our setup the power of a test ϕ(·) is βϕ = EQ[ϕ(x)].)

(iii) Assuming k ≥ 1, show that φ∗(x) is unbiased: βφ∗ ≥ α, and moreover βφ∗ > α unless P = Q.

2o (Monotone likelihood ratio). Assume there is a set with N items, of which D are defective.
One randomly selects n < N items (i.e., they are sampled from N items without replacement)
and shows them to you. You know N and n but not D. Let X be the number of defective items
among those observed, and let pD(x) be the corresponding family of p.m.f.’s parametrized by D
(and supported on X = {0, 1, ...,min{n,D}}). Find pD(x) and show that this is an MLR family
with respect to T (X) = X.

3o (Simple null against a composite alternative in an exponential family). Let X1:n :=
(X1, ..., Xn) be an i.i.d. sample with X ∼ N (0, σ2) for each i ∈ [n] := {1, 2, ..., n}. Given σ2

0 > 0,
find the (asymptotically) UMP unbiased test of size α for testing H0 : σ2 = σ2

0 against H1 : σ2 6= σ2
0.

Use the normal approximation of χ2
n (Chi-squared distribution) via CLT and a characterization of

the UMP unbiased test in an exponential family given in the class (you are not required to prove it).
Hint 1: Express N (0, σ2) as an exponential family with a canonical parametrization.
Hint 2: Recall that the test must satisfy two conditions: its size is α, and E0[Tφ(T )] = E0[T ]α.

where E0[·] its expectation under the null. Try to find a form of the test for which the second condition
holds “automatically” in the CLT limit n→∞, regardless of α. The key word is “symmetry.”
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4o (Bayes-optimal test). Let P := {Pθ, θ ∈ Θ ⊆ Rk} be a family of distributions supported
on X ⊆ Rd, and consider the general problem of testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0

and Θ1 are disjoint and Θ = Θ0 ∪Θ1. Let Pθ have the density pθ(x) with respect to the Lebesgue
measure on Rd, i.e., a p.d.f. We are also given a prior Π on Θ – a distribution supported on Θ with
density π(θ), which reflects our “a priori guess” about the actual Pθ generating X.

Definition 1. The average risk of a test φ(x) with respect to Π is defined as the sum of errors of
both types averaged over θ ∼ Π:

RΠ(φ) :=

∫
Θ0

∫
X
φ(x)pθ(x)dx · π(θ)dθ +

∫
Θ1

∫
X

(1− φ(x))pθ(x)dx · π(θ)dθ.

Any test minimizing RΠ is called Bayes-optimal, and its average risk is called the Bayes risk (for Π).

(i) Show that the following test is Bayes-optimal:

φΠ(x) =

{
1, Π(Θ1|X = x) ≥ Π(Θ0|X = x),

0, Π(Θ1|X = x) < Π(Θ0|X = x),

where Π(Θ1|X = x) is the posterior probability of Θ1 if X = x is observed (similarly for Θ0).1

(ii) Show that for any choice of prior Π and test φ(·), RΠ(φ) lower-bounds the worst-case risk of φ:

R̄(φ) = sup
θ∈Θ

{
1[θ ∈ Θ0] ·

∫
X
φ(x)pθ(x)dx + 1[θ ∈ Θ1] ·

∫
X

(1− φ(x))pθ(x)dx

}
.

This is useful because in composite testing problems (i.e., when Θ0,Θ1 are not singletons),
worst-case risk is usually hard to evaluate precisely; however, if the prior Π is chosen reasonably,
the Bayes risk will be close to R̄(φ). How would you choose a prior? (This is not evaluated.)

(iii) Let φ̄ be any test minimizing R̄(φ). Such test is called minimax (or worst-case) optimal,
and R̄(φ̄) is called the minimax risk.

Using the results of (ii), conclude that the minimax risk is lower-bounded by the Bayes risk.

5o (Confidence-boosting via voting). Let X1, ..., Xn be an i.i.d. sample from Pθ, θ ∈ Θ.
Assume also that n = mk for some m, k ∈ N, and there is a deterministic test φ(x1:k) that, using k
observations, distinguishes between the two hypotheses H0, H1

2 with confidence 2/3, that is

max

{
sup
θ∈Θ0

Eθ[φ(X1:k)], sup
θ∈Θ1

Eθ[1− φ(X1:k)]

}
≤ 1

3
.

Now, consider the following simple procedure:

1. Split X1:n into m batches X(1), ..., X(m) of k observations each, i.e. X(j) := Xk(j−1)+1 : k(j−1)+k.

1Note that, in fact, we have Π(Θ0|X = x) + Π(Θ1|X = x) = Π(Θ) = 1, if Π is a probability measure; however, the
results of this exercise are preserved even when Π is improper (that is Π(Θ) 6= 1), and in particular when Π(Θ) = +∞.

2Corresponding to some partition Θ = Θ0 t Θ1, but this is not important in the context of this problem.
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2. Let Zj := φ(X(j)), and consider the test

ϕ = ϕ(X1:n) = 1

∑
j∈[m]

Zj ≥
m

2


—in other words, accept/reject H0 by aggregating the “basic” tests via the majority-vote rule.

(i) Working with the normal approximation for the binomial distribution (neglecting the error of

this approximation), and using that P[U ≥ u] ≤ e
−u2

2 where U ∼ N (0, 1), show the following:

Riskm(ϕ) . e−cm.

Here c > 0 is a constant; Riskm(ϕ) is the worst-case error (of either type) for test ϕ(X1:n)
with n = km; finally, . “hides” the CLT approximation in the following sense: have an actual
inequality, with “≤”, if the distribution of the appropriate asymptotically normal statistic
(converging to to N (0, 1) by CLT) is replaced with N (0, 1).3

(ii) Your next task is to show that the above bound (perhaps with some other c > 0) holds in
finite sample and with ≤ instead of .. To this end, assuming w.l.o.g. that m is even, note that

Riskm(ϕ) ≤
m∑

j=m/2

(
m

j

)(
1

3

)j (2

3

)m−j
<
(m

2
+ 1
)( m

m/2

)(
1

3

)m/2(2

3

)m/2
and upper-bound the right-hand side with e−cm.

(iii) Finally, show that we will get the same result in (ii) if, instead of 1/3, the “basic” test makes
an error with probability at most δ < 1/2; the only difference is that c will now depend on δ.

3Note that this does not suffice to argue that, say, Riskm(ϕ)ecm → const as n → ∞. Could you explain why?
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