
Math 541b: Introduction to Mathematical Statistics (Fall 2022)

Homework 1

Due: Mon 10/03

1o: Estimating the support of Unif([0, θ]).
Let X1, X2, ..., Xn be an i.i.d. sample from the uniform density f(x|θ) = 1

θ1{x ∈ [0, θ]} with θ > 0.
The Cramér-Rao theorem would seem to imply that the variance of any unbiased estimator of θ is
lower-bounded with θ2

n . Why cannot we apply it here?

• Construct an unbiased estimator that “violates” the Cramér-Rao bound. To this end, start
with the MLE, compute its bias, and “correct” it, so that the resulting estimator is unbiased.

• Show that the Cramér-Rao bound is “violated” by computing the variance of this estimator.

2o: Estimating the median in a location family.
For any µ ∈ R, let Pµ be the distribution of µ∗ + Z, where Z has the median 0 and some

(known) p.d.f. f such that f(0) > 0. We estimate µ∗ from i.i.d. sample X1:n = (X1, ..., Xn) ∼ P⊗nµ∗
with odd n, by the sample median of X1:n, defined as

M̂edn := X(n+1
2

)

where X(k) is the k-th order statistic, i.e. kth largest among X1:n.
(Note that we do not have to care about possible ties, since all Xi’s are different with probability 1).

(a) Show that M̂edn is unbiased when f is symmetric, i.e. when f(−x) = f(x) for all x ∈ R.

Hint. Use the tower rule: E[M̂edn] = E[E[M̂edn|Y ]] for any random variable Y . Try to find

the right random variable Y—supported on {1, ...n}—for which E[M̂edn|Y ] = 0 a.s.

(b) Show that M̂edn is the MLE when Z has the standard Laplace distribution: f(u) = 1
2e
−|u|.

Hint: what is the derivative of `(u) := log f(u)? Does it matter that `′(0) is not defined?

(c) Compute the Fisher information and Var(M̂edn) in this case, and verify that M̂edn here
achieves the Cramér-Rao bound for any n.

(c′) Compute the variance of M̂edn in this situation (i.e. Laplace distribution) in the cases n = 1
and n = 3. Compare with the Cramér-Rao bound.

Hint. Use the following fact: if X1:n is an i.i.d. sample from a law with c.d.f. FX(x), then
the c.d.f. of its kth order statistic is

FX(k)
(x) =

k−1∑
j=0

(
n

j

)
FX(x)n−j(1− FX(x))j

1



Another useful fact is that M̂edn is shift-equivariant: if we shift the distribution by a con-
stant a ∈ R, then the distribution of M̂edn will simply be shifted in the same way. This allows
to assume w.l.o.g. that µ∗ = 0 in your calculations.

(d) Find the asymptotic variance of M̂edn in the general situation, i.e. only assuming that f(0) > 0.

Hint. Use the so-called “delta-method:” if θ̂n estimates θ ∈ R in such a way that

√
n(θ̂n − θ)  

n→∞
N (0, σ2),

and g(·) is differentiable at θ, then
√
n[g(θ̂n)− g(θ)]  

n→∞
N (0, σ2

g) with σ2
g = σ2(g′(θ))2.

What you can say about this in the light of the previous example (with the Laplacian density)?

(e) Give another example of a symmetric f(u) such that M̂edn does not attain the Cramér-Rao
bound in the corresponding family.

3o: MLE for the ratio of two independent exponential distributions.
Let X ∼ Exp(λ) and Y ∼ Exp(µ) be independent, where Exp(λ) is the distribution with p.d.f.

λe−λx, x > 0.

Let Z = X/Y , and consider an i.i.d. sample (Z1, ..., Zn) with each Zi being distributed as Z.

(a) Without deriving the distribution of Z explicitly, argue that it depends only on θ := µ/λ, not
on λ, µ separately.

Hint: for α > 0, what is the distribution of αX?

(b) Show that the p.d.f. of Z is

f(z|θ) =
θ

(z + θ)2
, z > 0.

Does this distribution have an expectation?

Hint: you might want to start with the c.d.f.

(c) Show that θ̂n, the MLE of θ from Z1, ..., Zn, satisfies the following equation:

n∑
i=1

F (Zi|θ̂n) =
n

2

where F (z|θ) is the c.d.f. of Z. Argue that the solution always exists and is unique.

(d) Comment on the above equation, explaining why the right-hand side has the factor 1
2 . To this

end, show that for any continuous distribution Pθ with c.d.f. H(t; θ), it holds that

ET∼Pθ [H(T ; θ)] =
1

2
.

Then explain the MLE equation in this context.

Hint: You may draw an analogy with the method of moments.
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(e) Show that for the distribution whose p.d.f. you found in (b), θ also happens to be the median.

(f)∗ As such, in the setup of (a)-(b) we can also estimate ρ with the sample median M̂edn whose
properties we have studied in 2o, and compare it with ρ̂. Recalling the result of 2o, part (d),

show that here Var(ρ̂n) ≤ Var(M̂edn). Hint: Use Jensen’s inequality.

4o: Tail bounds for the Gaussian distribution.

Let φ(·) be the p.d.f. of N (0, 1), i.e. φ(t) = 1√
2π
e−

t2

2 . For any u ≥ 0, let Φ(u) :=
∫
t≥u φ(t)dt.

(a) Prove the following bounds (holding for all u ≥ 0):(
1

u
− 1

u3

)
φ(u) ≤ Φ(u) ≤ 1

u
φ(u).

Hint 1: Try to prove the upper bound first.

Hint 2: Integration by parts is the way here; use it first to prove the upper bound, and then
for the lower bound.

(b) Capitalizing on the trick you have just figured out to get the lower bound from the upper
bound, prove a new upper bound:

Φ(u) ≤
(

1

u
− 1

u3
+

3

u5

)
φ(u).

Note that this bound is sharper than the previous one for large enough u.

(c)∗ If we continue applying this approach iteratively, what bounds shall we get after k such
“iterations?”

5o: Bias-variance tradeoff and the James-Stein estimator. Consider the problem of estimating
the mean µ in the multivariate Gaussian location family

Pµ = N (µ, I), µ ∈ Rd, (1)

from a single observation X ∼ Pµ. Note that here, X itself is the maximum likelihood estimator
(MLE) for µ. Defining for any estimator µ̂ = µ̂(X) of µ the variance

Varµ[µ̂] := Eµ[‖µ̂− E[µ̂]‖2]

and the quadratic risk
Riskµ[µ̂] := Eµ[‖µ̂− µ‖2],

where ‖x‖ := (
∑

i x
2
i )

1/2 is the Euclidean norm of x = (x1, ..., xd) ∈ Rd, we see that for any µ ∈ Rd,

Riskµ[X] = Varµ[X] = d.

Intuitively, it is hard to suspect that one can find a more reasonable estimator of µ than X.
Yet, this turns out to be the case: one may improve over the MLE uniformly on the family (1)
when d > 2. This celebrated result was established by James and Stein in 1976, and our goal is to
reproduce it.

But first, let us establish the terminology.
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Definition 1. An estimator µ̂ is dominated by some other estimator µ̂′ if Riskµ[µ̂′] ≤ Riskµ[µ̂] for
any µ, and there exists a parameter value µ̄ such that Riskµ̄[µ̂′] < Riskµ̄[µ̂].

Definition 2. An estimator µ̂ is called admissible if it is not dominated by any other estimator.
Otherwise, it is called inadmissible.

As statisticians, ideally we would like to compare two estimators over the whole family at once,
without specifying a value of µ. Two admissible estimators cannot be compared this way, but at
the very least we can rule out any inadmissible estimator, as for it there exists a uniformly better one.

You will show that the MLE is inadmissible when d ≥ 3, by constructing a dominating estimator.

(a) Consider shrinkage estimators µ̂ = sX with s ∈ R, and compute their risks for any s. Show
that one can restrict attention to s ∈ [0, 1] (hence “shrinkage”) by finding a dominating
estimator for µ̂ with s < 0 or s > 1.

Hint: look for an estimator µ̂′ = s′X with s′ ∈ [0, 1].

(b) Show that, for given µ, the best value of s—i.e., the one minimizing the risk—is given by

s∗ =
‖µ‖2

d+ ‖µ‖2
= 1− d

d+ ‖µ‖2
.

(c) Unfortunately, µ̂∗ = s∗X is not a proper estimator. (Why?) Instead of it, one may consider(
1− d

‖X‖2

)
X,

which is an actual estimator. Can you explain the heuristic motivation behind this estimator?

(d)∗ (Bonus.) Assuming that d ≥ 2, derive the James-Stein estimator

µ̂JS =

(
1− d− 2

‖X‖2

)
X (2)

by minimizing over δ ∈ R the risk of the estimator

µ̂δ =

(
1− δ

‖X‖2

)
X

for a fixed µ. In order to show that R(δ) = Riskµ[µ̂δ] is minimized at d− 2, use Stein’s lemma:

Lemma 1. Let X ∼ N (µ, I) and g(x) be a function on Rd differentiable almost everywhere,

and such that Eµ

[
| ∂∂xi g(X)|

]
<∞ and Eµ[|(Xi−µi)g(X)|] <∞ for any i ∈ [d] := {1, 2, ..., d}.

Then

Eµ[(Xi − µi)g(X)] = Eµ

[
∂

∂xi
g(X)

]
, i ∈ [d].

When applying Stein’s lemma to the right function g(X), please do check the absolute
integrability conditions in its premise, and explain why the argument does not work for d = 1.

Finally, verify that R(δ) is strictly convex when d ≥ 3 (thus µ̂JS indeed dominates the MLE).
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