
Math 6262: Introduction to Mathematical Statistics

Homework 3 (due on April 30)

Disclaimer: M-estimators. Let P := {Pθ|θ ∈ Θ ⊆ Rd} be a family of distributions supported
on Z ⊆ Rd.1 In the general paradigm of M -estimation, one treats the problem of estimating the true
parameter θ∗ ∈ Θ that generated the i.i.d. observations Z1:n := (Z1, ..., Zn) as that of minimizing
some loss function ℓ(θ, Z). If ℓ(θ, Z) is the negative log-likelihood for the p.d.f. of Pθ ∈ P, then we
return to the maximum-likelihood paradigm, and recover MLE as the corresponding M -estimator:

θ̂n ∈ Argmin
θ∈Θ

{
Ln(θ) :=

1

n

∑
i∈[n]

ℓ(θ, Zi)

}
. (1)

In particular, we recover least-squares for ℓ(θ, x) = 1
2∥θ − x∥22, corresponding to the full Gaussian

location family {N (θ, Id)|θ ∈ Rd}. However, sometimes it makes sense to use a loss function ℓ(θ, x)
that is not the negative log-likelihood for Pθ – and possibly not even a log-likelihood at all. Such as:

(a) Mean/location estimation: here ℓ(θ, z) = φ(θ − z) for some φ : Rd → R+, often assumed
convex, centrally symmetric (φ(u) = φ(−u)), and minimized in the origin. Some examples are

ℓp-loss (for p ≥ 1):
ℓp(θ, z) := ∥θ − z∥pp

Note that p = 2 corresponds to the quadratic loss (and the sample average estimator).

Huber loss (d = 1): ℓ(θ, x) = h(θ− x) where h : R→ R is a convex and C2 function

h(u) =

{
1
2u

2, |u| ≤ 1,

|u| − 1
2 , |u| > 1.

(b) Regression: here Z = (X,Y ) ∈ Rd ×R, and loss functions are ρ(y − x⊤θ) where y − x⊤θ is
the residual; ρ : R→ R+ is a contrast function (usually convex, even, nondecreasing on R+).
E.g., one can take ρ from a 1d-location estimation problem.

(c) Classification: here Z = (X,Y ) ∈ Rd × {−1, 1}, and loss functions are ℓ(θ, z) = ϕ(−yx⊤θ)
where yx⊤θ is the margin, and ϕ : R→ R is a nondecreasing cost function. E.g.: (plot these!)

– logistic loss: ϕ(u) = − log2(
e−u

2 cosh(u)) = log2(1 + e2u), corresponding to logistic regression;

– ReLU loss: ϕ(u) = max(u, 0), often used in neural networks.

– hinge loss: ϕ(u) = max{u+1, 0}, corresponding to the “support vector machine” (SVM).

1We assumed that the parameter θ and observation Z have the same dimensionl; this can be made more general.
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In particular, this framework allows to treat various statistical problems (mean estimation,
regression, classification, testing) in a unified way. The next several problems concern M -estimators.

1.ao: Unbiased location estimation. Assume the actual data-generating distribution reads

Z = θ∗ + ξ

where ξ ∈ Rd has a centrally-symmetric p.d.f. f(·). Show that M -estimator (1) with ℓ(θ, z) = φ(θ−z)
is unbiased (i.e. E∗[θ̂n] = θ∗) when φ is centrally symmetric. (Hint: what can you say about ∇φ?)

1.bo: From regression to classification. In regression or in one-dimensional location
estimation, one may want to go with a contrast function ρ : R→ R+ that satisfies the following:

(i) ρ is convex, even (thus minimized at 0), such that ρ(0) = 0 and ρ′′(0) = 1, is 1-
Lipschitz over R (i.e. |ρ′| ≤ 1), and such that ρ(u) ≥ |u| − C for some constant C ≥ 0.
(Think of Huber’s function.)

Note that the square loss ρ(u) = 1
2u

2 satisfies all these properties but the last one; enforcing the
Lipschitz property (i.e., a global bound on |ρ′|) allows to ensure robustness of an estimator.2 On the
other hand, in classification it is desired to use a cost function ϕ : R→ R+ satisfying the following:

(ii) ϕ is convex, 1-Lipschitz, and is an upper bound for the step function θ(u) := 1{u ≥ 0}
tight at 0 (i.e. ϕ(0) = 1 and ϕ(u) ≥ θ(u) for all u ∈ R).

1. Show that any contrast ρ satisfying (i) generates a cost function ϕ satisfying (ii), in the form:

ϕ(u) = aρ(u) + bu+ c (2)

for some universal constants a, b, c independent of ρ. Hint: to understand why this form, plot
the derivatives of the Huber and logistic loss: both have a sigmoid shape, but different ranges.

2. Apply the above rule to a “pseudo-Huber” function ρ(u) = log(cosh(u)) and sketch the graph
of the resulting ϕ(u). Verify that ρ(−∞) > 0 (strictly). Explain why (2) does not allow to
ensure ρ(−∞) = 0 (as for the logistic and hinge losses). Hint: how many conditions to fit?

1.co: Bayes estimator. In the Bayesian paradigm of statistical inference, instead of fixing θ
at some (unknown) value θ∗, one allows θ to be a random variable with a known distribution Π
over Θ. Let L(θ′, θ) be the loss function of inference θ′ on the parameter value θ. This can be
any nonnegative function on Θ × Θ, but usually one would take L(θ′, θ∗) = L(θ′), the negative
log-likelihood corresponding to the population Pθ and evaluated at θ′.3 Next, one defines the risk

R(g|θ) := EZ1:n∼Pθ
⊗n [L(θ̂(Z1:n), θ)]

2Intuitively, we do not want to be perturbed ”too much” by a ”counterfeit” datapoint that might be far from the
bulk of datapoints in the sample. This was the key idea in Huber’s 1964 seminal paper [Hub64]: he modified the
square loss to enforce Lipschitzness, then established a minimax property of the corresponding M -estimator in the
contamination model, where the data comes from a mixture of a normal distribution with (arbitrary) ”parasitic” one.

3For example, L(θ′, θ) = 1
2
∥θ′ − θ∥22 for the Gaussian location family {N (θ, Id), θ ∈ R}.
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of an estimator g := θ̂(·); note that R(·|θ) is a functional—called risk functional—over estimators,
i.e. measurable functions g : Zn → Θ. Finally, the Bayes risk of estimator g w.r.t. Π is the functional

RΠ(g) := E
θ∼Π

[R(g|θ)].

Clearly, RΠ depends on the prior Π, which has to be chosen “reasonably:” we put a priori weight π(θ)
on each distribution Pθ in the family P , so we are now biased towards distributions that we consider
“a priori more likely.” On the positive side, once Π is fixed, the Bayes risk can be computed for any
estimator, so we can compare estimators according to their Bayes risks – and construct the best one.

Definition 1. Any estimator gΠ : Zn → Θ minimizing the Bayes risk is called a Bayes estimator.

Show the following explicit characterization of Bayes estimators. (We can assume n = 1 – why?)

Theorem 1. Any Bayes estimator gΠ = θ̂Π(·) can be characterized as follows: for each possible
observed value z1:n ∈ Zn, the value θ̂Π(z1:n) minimizes the posterior loss given that Z1:n = z1:n, i.e.

θ̂Π(z1:n) ∈ Argmin
θ′∈Θ

∫
Θ
L(θ′, θ)π(θ|z1:n) dθ,

where π(θ|z1:n) is the posterior density (denoting with f⊗n
θ the p.d.f. of the product distribution P⊗n

θ ):

π(θ|z1:n) =
f⊗n
θ (z1:n)π(θ)∫

Θ f⊗n
θ′ (z1:n)π(θ′) dθ′

.

Hint: write RΠ(g) explicitly as a double integral in θ and z1:n. Then, treating θ̂(z1:n) as a
“continuum-vector” with “entries” indexed by z1:n ∈ Zn, take partial derivative w.r.t. θ̂(z1:n).

2o: Confidence-boosted testing via voting. LetX1, ..., Xn be an i.i.d. sample from Pθ, θ ∈ Θ.
Assume also that n = 2mk for some m, k ∈ N, and there is a deterministic test ϕ(x1:k) that, using k
observations, distinguishes between the two hypotheses H0, H1

4 with confidence 2/3, that is

max

{
sup
θ∈Θ0

Eθ[ϕ(X1:k)], sup
θ∈Θ1

Eθ[1− ϕ(X1:k)]

}
≤ 1

3
.

Now, consider the following simple procedure:

1. SplitX1:n into 2m batchesX(1), ..., X(2m) of k observations each, i.e.X(j) := Xk(j−1)+1 : k(j−1)+k.

2. Let Zj := ϕ(X(j)), and consider the test

φ = φ(X1:n) = 1

 ∑
j∈[2m]

Zj > m


—in other words, accept/reject H0 by aggregating the “basic” tests via the majority-vote rule.

4Corresponding to some partition Θ = Θ0 ⊔Θ1, but this is not important in the context of this problem.
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(a) Working with the normal approximation for the binomial distribution (neglecting the error of

this approximation), and using that P[U ≥ u] ≤ e
−u2

2 where U ∼ N (0, 1), show the following:

Riskm(φ) “ ≤ ” e−cm.

Here c > 0 is a constant; Riskm(φ) is the worst-case error (of either type) for test φ(X1:n)
with n = 2mk; finally, “ ≤ ” means the following: the inequality would be valid if the distribution
of the appropriate asymptotically normal statistic were simply replaced with N (0, 1).

(b) Your next task is to show that the above inequality is actually valid and, moreover, valid in
finite sample. To this end, justify (in English) the inequalities

Riskm(φ) ≤
2m∑

j=m+1

(
2m

j

)(
1

3

)j (2

3

)2m−j

≤ m

(
2m

m

)(
1

3

)m(
2

3

)m

,

then bound the right-hand side. Hint: you can use that
(
2m
m

)
≤ 22m (explain why this is true).

3o: Local behavior of f-divergences. In this exercise, you are invited to show that f -
divergence with a strictly convex function f locally behaves as the χ2-divergence. Namely, assume
that f : R++ → R (where R++ is the set of all positive reals) satisfies the following assumptions:

• f(1) = 0;

• uniformly bounded third derivative on R++, that is f
′′′ exists on R++ and supr>0 |f ′′′(r)| < ∞;

• f is strictly convex (and thus by the previous assumption f ′′(r) > 0 for any r > 0).

Recall that the associated f -divergence between two distributions P,Q with the same sample space,
with densities p, q with respest to a dominating measure µ, is

Df (P ||Q) := EQ

[
f

(
dP

dQ

)]
=

∫
X
f (r(x)) q(x)dµ(x),

where r(x) := p(x)
q(x) is the likelihood ratio and X is the support of µ. Fixing some P and Q, consider

the “segment” between them, that is, the family of distributions Pt := (1− t)Q+ tP for 0 ≤ t ≤ 1.

1. Show that as t → 0,

Df (Pt||Q) = (1 + o(1))
f ′′(1)

2
χ2(Pt||Q)

where o(1) → 0 and χ2(P ||Q) is the chi-square divergence, i.e. Dh(P ||Q) with h(r) = (1− r)2.

2. Verify that χ2(Pt||Q) = t2χ2(P ||Q) and conclude that Df (Pt||Q) is locally quadratic in t.

Hint: consider the 3rd-order Taylor expansion of f(r) at r = 1; the 1st-order term must vanish.
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