Math 6262: Introduction to Mathematical Statistics
Homework 3 (due on April 30)

Disclaimer: M-estimators. Let P := {Py|0 € © C R} be a family of distributions supported
on Z C R%" In the general paradigm of M-estimation, one treats the problem of estimating the true
parameter §* € © that generated the i.i.d. observations Z1., := (Z1, ..., Z,) as that of minimizing
some loss function £(6, Z). If ¢(, Z) is the negative log-likelihood for the p.d.f. of Py € P, then we
return to the maximum-likelihood paradigm, and recover MLE as the corresponding M-estimator:

6, € Argmin {Ln(ﬁ) - % 3 e(e,zi)}. (1)

beo i€[n]

In particular, we recover least-squares for £(6,z) = 3|6 — z||3, corresponding to the full Gaussian

location family {N(0,14)|6 € R%}. However, sometimes it makes sense to use a loss function £(6, x)
that is not the negative log-likelihood for Py — and possibly not even a log-likelihood at all. Such as:

(a) Mean/location estimation: here £(f,2) = ¢(f — z) for some ¢ : R — R, often assumed
convex, centrally symmetric (¢p(u) = ¢(—u)), and minimized in the origin. Some examples are

lp-loss (for p > 1):
p(0,2) := [0 = =lj

Note that p = 2 corresponds to the quadratic loss (and the sample average estimator).

Huber loss (d =1): £(0,x) = h(0 — x) where h : R — R is a convex and C? function

14,2 <1
h(u):{ s, <1,

lu| — %, lu| > 1.

(b) Regression: here Z = (X,Y) € R? x R, and loss functions are p(y — 2 '0) where y — 276 is
the residual; p : R — Ry is a contrast function (usually convex, even, nondecreasing on R).
E.g., one can take p from a ld-location estimation problem.

(c) Classification: here Z = (X,Y) € R% x {—1,1}, and loss functions are £(0, z) = ¢(—yz ' 0)
where yz ' is the margin, and ¢ : R — R is a nondecreasing cost function. E.g.: (plot these!)
— logistic loss: ¢(u) = — logQ(#&u)) = logy (1 + €2%), corresponding to logistic regression;
— ReLU loss: ¢(u) = max(u,0), often used in neural networks.

— hinge loss: ¢(u) = max{u+ 1, 0}, corresponding to the “support vector machine” (SVM).

We assumed that the parameter # and observation Z have the same dimensionl; this can be made more general.



In particular, this framework allows to treat various statistical problems (mean estimation,
regression, classification, testing) in a unified way. The next several problems concern M-estimators.

1.a°: Unbiased location estimation. Assume the actual data-generating distribution reads
Z=0"+¢

where ¢ € RY has a centrally-symmetric p.d.f. f(-). Show that M-estimator (1) with £(6, 2) = ©(6—2)

is unbiased (i.e. E.[6,] = 6*) when ¢ is centrally symmetric. (Hint: what can you say about V¢ ?)

1.b°: From regression to classification. In regression or in one-dimensional location
estimation, one may want to go with a contrast function p : R — R that satisfies the following:

(1) p is convex, even (thus minimized at 0), such that p(0) = 0 and p”(0) = 1, is 1-
Lipschitz over R (i.e. |p/| < 1), and such that p(u) > |u| — C for some constant C' > 0.
(Think of Huber’s function.)

Note that the square loss p(u) = %uQ satisfies all these properties but the last one; enforcing the
Lipschitz property (i.e., a global bound on |p’|) allows to ensure robustness of an estimator.” On the

other hand, in classification it is desired to use a cost function ¢ : R — R satisfying the following:

(11) ¢ is convex, 1-Lipschitz, and is an upper bound for the step function 0(u) := 1{u > 0}
tight at 0 (i.e. ¢(0) =1 and ¢(u) > 0(u) for all u € R).

1. Show that any contrast p satisfying (i) generates a cost function ¢ satisfying (i7), in the form:
d(u) = ap(u) + bu + ¢ (2)

for some universal constants a, b, ¢ independent of p. Hint: to understand why this form, plot
the derivatives of the Huber and logistic loss: both have a sigmoid shape, but different ranges.

2. Apply the above rule to a “pseudo-Huber” function p(u) = log(cosh(u)) and sketch the graph
of the resulting ¢(u). Verify that p(—oc) > 0 (strictly). Explain why (2) does not allow to
ensure p(—oo) = 0 (as for the logistic and hinge losses). Hint: how many conditions to fit?

1.c°: Bayes estimator. In the Bayesian paradigm of statistical inference, instead of fixing 6
at some (unknown) value 6%, one allows 6 to be a random variable with a known distribution II
over ©. Let L(#',0) be the loss function of inference ¢ on the parameter value §. This can be
any nonnegative function on © x O, but usually one would take L(6’,6*) = L(6'), the negative
log-likelihood corresponding to the population Py and evaluated at #’.> Next, one defines the risk

A~

R(g|0) ==Kz, p,en[L(0(Z1:1),0)]

Intuitively, we do not want to be perturbed ”too much” by a ”counterfeit” datapoint that might be far from the
bulk of datapoints in the sample. This was the key idea in Huber’s 1964 seminal paper [Hub64]: he modified the
square loss to enforce Lipschitzness, then established a minimax property of the corresponding M-estimator in the
contamination model, where the data comes from a mixture of a normal distribution with (arbitrary) ”parasitic” one.

For example, L(6',0) = 1|/’ — 0|5 for the Gaussian location family {N(0,14),0 € R}.



of an estimator g := 0(-); note that R(:|0) is a functional —called risk functional —over estimators,
i.e. measurable functions g : Z" — O. Finally, the Bayes risk of estimator g w.r.t. Il is the functional

Fulg) = E [R(gl6))

Clearly, Ry depends on the prior IT, which has to be chosen “reasonably:” we put a priori weight ()
on each distribution Py in the family P, so we are now biased towards distributions that we consider
“a priori more likely.” On the positive side, once 1I is fixed, the Bayes risk can be computed for any
estimator, so we can compare estimators according to their Bayes risks — and construct the best one.

Definition 1. Any estimator g : 2™ — © minimizing the Bayes risk is called o Bayes estimator.

Show the following explicit characterization of Bayes estimators. (We can assume n = 1 —why?)

Theorem 1. Any Bayes estimator g = O (-) can be characterized as follows: for each possible
observed value z1., € Z™, the value HH( n) minimizes the posterior loss given that Zy., = zi., i.e.

én(zlm) € Argmin/ L(6,0) 7(0|21.,) dO,
0'cO (C]

where w(0|z1.,) is the posterior density (denoting with f(?" the p.d.f. of the product distribution IP(?"):

f5" (z1:0) 7(6)
Jo 5™ (z1m) w(6) dO'”

m(0]21:n) =

Hint: write Ry(g) explicitly as a double integral in 0 and z1.,. Then, treating é(zlm) as a
“continuum-vector” with “entries” indexed by z1., € Z", take partial derivative w.r.t. 0(z1.,).

29: Confidence-boosted testing via voting. Let X1, ..., X, be an i.i.d. sample from Py, 6 € O.
Assume also that n = 2mk for some m, k € IN, and there is a deterministic test ¢(z1.x) that, using k
observations, distinguishes between the two hypotheses Hy, H;* with confidence 2/3, that is

w\»—‘

max { sup Eg[¢(X1.1)], sup Eg[l — Cb(Xl:k)]} <
0€Oq [ASSH

Now, consider the following simple procedure:
1. Split X1., into 2m batches X(1)| ..., X (2™) of k; observations each, i.e. X(7) := Xk(G=1)+1: k(—1)+k-

2. Let Z; := ¢(X 1)), and consider the test

=p(X1n)=1| > Zj>m
JE€[2m]

—in other words, accept/reject Hy by aggregating the “basic” tests via the majority-vote rule.

4Corresponding to some partition © = ©¢ LI ©1, but this is not important in the context of this problem.



(a) Working with the normal approximation for the binomial distribution (neglecting the error of

2
this approximation), and using that P[U > u] < e™2 where U ~ N (0, 1), show the following:

RISkm(QO) « < » pTem .

Here ¢ > 0 is a constant; Risk,,(p) is the worst-case error (of either type) for test p(X1.,)
with n = 2mk; finally, “ < ” means the following: the inequality would be valid if the distribution
of the appropriate asymptotically normal statistic were simply replaced with N(0,1).

(b) Your next task is to show that the above inequality is actually valid and, moreover, valid in
finite sample. To this end, justify (in English) the inequalities

2m j 2m—j m m
2m 1\’ /2 J 2m 1 2
i km < E o o < o o )
Riskn(¢) < : < J ) <3> (3) - m<m> <3> <3>
j=m+1
then bound the right-hand side. Hint: you can use that (2::) < 22 (explain why this is true).

3%: Local behavior of f-divergences. In this exercise, you are invited to show that f-
divergence with a strictly convez function f locally behaves as the y2-divergence. Namely, assume
that f: R4y — R (where R4 is the set of all positive reals) satisfies the following assumptions:

o f(1)=0;
e uniformly bounded third derivative on R 4, that is f” exists on R4 and sup,~q | f"(r)| < oo;
e [ is strictly convex (and thus by the previous assumption f”(r) > 0 for any r > 0).

Recall that the associated f-divergence between two distributions P, () with the same sample space,
with densities p, ¢ with respest to a dominating measure pu, is

dpP
Dy(PIQ) =Ee |1 (55)] = [ 1o ainta)
X
where r(x) := % is the likelihood ratio and X is the support of p. Fixing some P and @), consider
the “segment” between them, that is, the family of distributions P, := (1 —¢)Q +tP for 0 <t < 1.
1. Show that as t — 0,
_ ) o
Dy(P]|Q) = (1 + 0(1)) ——x"(P]|Q)
where o(1) — 0 and x?(P||Q) is the chi-square divergence, i.e. Dy (P||Q) with h(r) = (1 —r)2.
2. Verify that x?(P||Q) = t*x*(P||Q) and conclude that D(P||Q) is locally quadratic in ¢.

Hint: consider the 3rd-order Taylor expansion of f(r) at r = 1; the 1st-order term must vanish.
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