Math 6262: Introduction to Mathematical Statistics Homework 3 (due on April 30)

Disclaimer: M-estimators. Let $\mathcal{P} := \{P_{\theta} | \theta \in \Theta \subseteq \mathbb{R}^d\}$ be a family of distributions supported on $\mathcal{Z} \subseteq \mathbb{R}^{d}$. In the general paradigm of M-estimation, one treats the problem of estimating the true parameter $\theta^* \in \Theta$ that generated the i.i.d. observations $Z_{1:n} := (Z_1, ..., Z_n)$ as that of minimizing some loss function $\ell(\theta, Z)$. If $\ell(\theta, Z)$ is the negative log-likelihood for the p.d.f. of $P_{\theta} \in \mathcal{P}$, then we return to the maximum-likelihood paradigm, and recover MLE as the corresponding M-estimator:

$$
\hat{\theta}_n \in \underset{\theta \in \Theta}{\text{Argmin}} \left\{ L_n(\theta) := \frac{1}{n} \sum_{i \in [n]} \ell(\theta, Z_i) \right\}.
$$
\n(1)

In particular, we recover least-squares for $\ell(\theta, x) = \frac{1}{2} ||\theta - x||_2^2$, corresponding to the full Gaussian location family $\{\mathcal{N}(\theta, \mathbf{I}_d)|\theta \in \mathbb{R}^d\}$. However, sometimes it makes sense to use a loss function $\ell(\theta, x)$ that is not the negative log-likelihood for P_{θ} – and possibly not even a log-likelihood at all. Such as:

(a) **Mean/location estimation:** here $\ell(\theta, z) = \varphi(\theta - z)$ for some $\varphi : \mathbb{R}^d \to \mathbb{R}_+$, often assumed convex, centrally symmetric ($\varphi(\mathbf{u}) = \varphi(-\mathbf{u})$), and minimized in the origin. Some examples are

 ℓ_p -loss (for $p \geq 1$):

$$
\ell_p(\theta, z) := \|\theta - z\|_p^p
$$

Note that $p = 2$ corresponds to the quadratic loss (and the sample average estimator).

Huber loss $(d = 1)$: $\ell(\theta, x) = h(\theta - x)$ where $h : \mathbb{R} \to \mathbb{R}$ is a convex and C^2 function

$$
h(u) = \begin{cases} \frac{1}{2}u^2, & |u| \le 1, \\ |u| - \frac{1}{2}, & |u| > 1. \end{cases}
$$

- (b) **Regression:** here $Z = (X, Y) \in \mathbb{R}^d \times \mathbb{R}$, and loss functions are $\rho(y x^\top \theta)$ where $y x^\top \theta$ is the residual; $\rho : \mathbb{R} \to \mathbb{R}_+$ is a contrast function (usually convex, even, nondecreasing on \mathbb{R}_+). E.g., one can take ρ from a 1d-location estimation problem.
- (c) Classification: here $Z = (X, Y) \in \mathbb{R}^d \times \{-1, 1\}$, and loss functions are $\ell(\theta, z) = \phi(-yx^\top \theta)$ where $yx^{\top}\theta$ is the margin, and $\phi : \mathbb{R} \to \mathbb{R}$ is a nondecreasing cost function. E.g.: (plot these!)
	- $− logistic loss: φ(u) = -log₂(\frac{e^{-u}}{2cosh(u)})$ $\frac{e^{-u}}{2\cosh(u)}$ = $\log_2(1+e^{2u})$, corresponding to *logistic regression*; – ReLU loss: $\phi(u) = \max(u, 0)$, often used in neural networks.
	- hinge loss: $\phi(u) = \max\{u + 1, 0\}$, corresponding to the "support vector machine" (SVM).

¹We assumed that the parameter θ and observation Z have the same dimensionl; this can be made more general.

In particular, this framework allows to treat various statistical problems (mean estimation, regression, classification, testing) in a unified way. The next several problems concern M-estimators.

 $1.a^o$: Unbiased location estimation. Assume the actual data-generating distribution reads

$$
Z = \theta^* + \xi
$$

where $\xi \in \mathbb{R}^d$ has a centrally-symmetric p.d.f. $f(\cdot)$. Show that M-estimator [\(1\)](#page-0-1) with $\ell(\theta, z) = \varphi(\theta - z)$ is unbiased (i.e. $\mathbb{E}_*[\hat{\theta}_n] = \theta^*$) when φ is centrally symmetric. (*Hint: what can you say about* $\nabla \varphi$?)

1. b^o : From regression to classification. In regression or in one-dimensional location estimation, one may want to go with a contrast function $\rho : \mathbb{R} \to \mathbb{R}_+$ that satisfies the following:

(i) ρ is convex, even (thus minimized at 0), such that $\rho(0) = 0$ and $\rho''(0) = 1$, is 1-Lipschitz over R (i.e. $|\rho'| \leq 1$), and such that $\rho(u) \geq |u| - C$ for some constant $C \geq 0$. (Think of Huber's function.)

Note that the square loss $\rho(u) = \frac{1}{2}u^2$ satisfies all these properties but the last one; enforcing the Lipschitz property (i.e., a global bound on $|\rho'|\$) allows to ensure *robustness* of an estimator.^{[2](#page-1-0)} On the other hand, in *classification* it is desired to use a cost function $\phi : \mathbb{R} \to \mathbb{R}_+$ satisfying the following:

(ii) ϕ is convex, 1-Lipschitz, and is an upper bound for the step function $\theta(u) := \mathbb{1}\{u \geq 0\}$ tight at 0 (i.e. $\phi(0) = 1$ and $\phi(u) > \theta(u)$ for all $u \in \mathbb{R}$).

1. Show that any contrast ρ satisfying (i) generates a cost function ϕ satisfying (ii), in the form:

$$
\phi(u) = a\rho(u) + bu + c \tag{2}
$$

for some universal constants a, b, c independent of ρ . Hint: to understand why this form, plot the derivatives of the Huber and logistic loss: both have a sigmoid shape, but different ranges.

2. Apply the above rule to a "pseudo-Huber" function $\rho(u) = \log(\cosh(u))$ and sketch the graph of the resulting $\phi(u)$. Verify that $\rho(-\infty) > 0$ (strictly). Explain why [\(2\)](#page-1-1) does not allow to ensure $\rho(-\infty) = 0$ (as for the logistic and hinge losses). Hint: how many conditions to fit?

1.c^o: Bayes estimator. In the Bayesian paradigm of statistical inference, instead of fixing θ at some (unknown) value θ^* , one allows θ to be a *random variable* with a *known* distribution Π over Θ. Let $L(\theta', \theta)$ be the *loss function* of inference θ' on the parameter value θ . This can be any nonnegative function on $\Theta \times \Theta$, but usually one would take $L(\theta', \theta^*) = L(\theta')$, the negative log-likelihood corresponding to the population \mathbb{P}_{θ} and evaluated at $\theta'.^3$ $\theta'.^3$ Next, one defines the *risk*

$$
R(g|\theta) := \mathbb{E}_{Z_{1:n}\sim \mathbb{P}_{\theta}^{\otimes n}}[L(\hat{\theta}(Z_{1:n}), \theta)]
$$

²Intuitively, we do not want to be perturbed "too much" by a "counterfeit" datapoint that might be far from the bulk of datapoints in the sample. This was the key idea in Huber's 1964 seminal paper [\[Hub64\]](#page-3-0): he modified the square loss to enforce Lipschitzness, then established a minimax property of the corresponding M-estimator in the contamination model, where the data comes from a mixture of a normal distribution with (arbitrary) "parasitic" one.

³For example, $L(\theta', \theta) = \frac{1}{2} ||\theta' - \theta||_2^2$ for the Gaussian location family $\{\mathcal{N}(\theta, \mathbf{I}_d), \theta \in \mathbb{R}\}.$

of an estimator $g := \hat{\theta}(\cdot)$; note that $R(\cdot|\theta)$ is a functional—called *risk functional*—over estimators, i.e. measurable functions $g: \mathcal{Z}^n \to \Theta$. Finally, the *Bayes risk* of estimator g w.r.t. Π is the functional

$$
R_{\Pi}(g) := \mathop{\mathbb{E}}_{\theta \sim \Pi} [R(g|\theta)].
$$

Clearly, R_{Π} depends on the prior Π , which has to be chosen "reasonably:" we put a priori weight $\pi(\theta)$ on each distribution \mathbb{P}_{θ} in the family \mathcal{P} , so we are now biased towards distributions that we consider "a priori more likely." On the positive side, once Π is fixed, the Bayes risk can be computed for any estimator, so we can compare estimators according to their Bayes risks – and construct the best one.

Definition 1. Any estimator $g_{\Pi}: \mathcal{Z}^n \to \Theta$ minimizing the Bayes risk is called a **Bayes estimator**.

Show the following explicit characterization of Bayes estimators. (We can assume $n = 1 - \text{why?}$)

Theorem 1. Any Bayes estimator $g_{\Pi} = \hat{\theta}_{\Pi}(\cdot)$ can be characterized as follows: for each possible observed value $z_{1:n} \in \mathcal{Z}^n$, the value $\hat{\theta}_{\Pi}(z_{1:n})$ minimizes the posterior loss given that $Z_{1:n} = z_{1:n}$, i.e.

$$
\hat{\theta}_{\Pi}(z_{1:n}) \in \underset{\theta' \in \Theta}{\text{Argmin}} \int_{\Theta} L(\theta', \theta) \,\pi(\theta | z_{1:n}) \,d\theta,
$$

where $\pi(\theta|z_{1:n})$ is the posterior density (denoting with $f_{\theta}^{\otimes n}$ $\stackrel{\otimes n}{\theta}$ the p.d.f. of the product distribution $\mathbb{P}_{\theta}^{\otimes n}$ $_{\theta}^{\otimes n}$):

$$
\pi(\theta|z_{1:n}) = \frac{f_{\theta}^{\otimes n}(z_{1:n})\,\pi(\theta)}{\int_{\Theta} f_{\theta'}^{\otimes n}(z_{1:n})\,\pi(\theta')\,d\theta'}.
$$

Hint: write $R_{\Pi}(g)$ explicitly as a double integral in θ and $z_{1:n}$. Then, treating $\hat{\theta}(z_{1:n})$ as a "continuum-vector" with "entries" indexed by $z_{1:n} \in \mathcal{Z}^n$, take partial derivative w.r.t. $\hat{\theta}(z_{1:n})$.

2^o: Confidence-boosted testing via voting. Let $X_1, ..., X_n$ be an i.i.d. sample from $\mathbb{P}_{\theta}, \theta \in \Theta$. Assume also that $n = 2mk$ for some $m, k \in \mathbb{N}$, and there is a deterministic test $\phi(x_{1:k})$ that, using k observations, distinguishes between the two hypotheses H_0, H_1^4 H_0, H_1^4 with confidence $2/3$, that is

$$
\max\left\{\sup_{\theta\in\Theta_0}\mathbb{E}_{\theta}[\phi(X_{1:k})], \sup_{\theta\in\Theta_1}\mathbb{E}_{\theta}[1-\phi(X_{1:k})]\right\} \leq \frac{1}{3}.
$$

Now, consider the following simple procedure:

- 1. Split $X_{1:n}$ into $2m$ batches $X^{(1)},...,X^{(2m)}$ of k observations each, i.e. $X^{(j)} := X_{k(j-1)+1 \,:\, k(j-1)+k}$.
- 2. Let $Z_j := \phi(X^{(j)})$, and consider the test

$$
\varphi = \varphi(X_{1:n}) = \mathbb{1}\left[\sum_{j\in[2m]} Z_j > m\right]
$$

—in other words, accept/reject H_0 by aggregating the "basic" tests via the majority-vote rule.

⁴Corresponding to some partition $\Theta = \Theta_0 \sqcup \Theta_1$, but this is not important in the context of this problem.

(a) Working with the normal approximation for the binomial distribution (neglecting the error of this approximation), and using that $\mathbb{P}[U \ge u] \le e^{\frac{-u^2}{2}}$ where $U \sim \mathcal{N}(0, 1)$, show the following:

$$
\text{Risk}_m(\varphi) \ \ ^\omega \leq \ ^\circ \ e^{-cm}.
$$

Here $c > 0$ is a constant; $Risk_m(\varphi)$ is the worst-case error (of either type) for test $\varphi(X_{1:n})$ with $n = 2mk$; finally, " \leq " means the following: the inequality would be valid if the distribution of the appropriate asymptotically normal statistic were simply replaced with $\mathcal{N}(0, 1)$.

(b) Your next task is to show that the above inequality is actually valid and, moreover, valid in finite sample. To this end, justify (in English) the inequalities

$$
\text{Risk}_{m}(\varphi) \leq \sum_{j=m+1}^{2m} {2m \choose j} \left(\frac{1}{3}\right)^j \left(\frac{2}{3}\right)^{2m-j} \leq m {2m \choose m} \left(\frac{1}{3}\right)^m \left(\frac{2}{3}\right)^m,
$$

then bound the right-hand side. *Hint: you can use that* $\binom{2m}{m}$ $\binom{2m}{m} \leq 2^{2m}$ (explain why this is true).

 3^o : Local behavior of f-divergences. In this exercise, you are invited to show that fdivergence with a *strictly convex* function f locally behaves as the χ^2 -divergence. Namely, assume that $f: \mathbb{R}_{++} \to \mathbb{R}$ (where \mathbb{R}_{++} is the set of all positive reals) satisfies the following assumptions:

- $f(1) = 0;$
- uniformly bounded third derivative on \mathbb{R}_{++} , that is f''' exists on \mathbb{R}_{++} and $\sup_{r>0}|f'''(r)| < \infty$;
- f is strictly convex (and thus by the previous assumption $f''(r) > 0$ for any $r > 0$).

Recall that the associated f-divergence between two distributions P, Q with the same sample space, with densities p, q with respest to a dominating measure μ , is

$$
D_f(P||Q) := \mathbb{E}_Q \left[f\left(\frac{dP}{dQ}\right) \right] = \int_{\mathcal{X}} f\left(r(x)\right) q(x) d\mu(x),
$$

where $r(x) := \frac{p(x)}{q(x)}$ is the likelihood ratio and X is the support of μ . Fixing some P and Q, consider the "segment" between them, that is, the family of distributions $P_t := (1-t)Q + tP$ for $0 \le t \le 1$.

1. Show that as $t \to 0$,

$$
D_f(P_t||Q) = (1 + o(1)) \frac{f''(1)}{2} \chi^2(P_t||Q)
$$

where $o(1) \to 0$ and $\chi^2(P||Q)$ is the chi-square divergence, i.e. $D_h(P||Q)$ with $h(r) = (1 - r)^2$.

2. Verify that $\chi^2(P_t||Q) = t^2 \chi^2(P||Q)$ and conclude that $D_f(P_t||Q)$ is locally quadratic in t.

Hint: consider the 3rd-order Taylor expansion of $f(r)$ at $r = 1$; the 1st-order term must vanish.

References

[Hub64] Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):73 – 101, 1964.