Math 6262: Statistical Estimation Homework 2

Due: Tue 12/03

1^o: Estimating the support of $Uniform([0, \theta])$.

Consider the task of estimating the (right boundary of the) support of the uniform distribution $\mathbb{P}_{\theta} = \text{Uniform}([0,\theta])$ —i.e. one with p.d.f. $f(x|\theta) = \frac{1}{\theta}\mathbb{1}\{x \in [0,\theta]\}$ for some $\theta > 0$ —from an i.i.d. sample $X_{1:n} := (X_1, X_2, ..., X_n)$.

- (a) Compute the Fisher information $\mathbb{I}(\theta^*)$ as an explicit function of true parameter value θ^* . (Note that since $\theta \in \mathbb{R}$, $\mathbb{I}(\theta^*)$ is a 1-by-1 matrix, i.e. just a number.) Write down the resulting Cramér-Rao bound (CRB). Pinpoint the assumption whose violation invalidates the CRB.
- (b) Our next goal is to show that CRB is indeed "violated" in this statistical model, by exhibiting an estimator with a smaller asymptotic variance.
 - Find the MLE $\hat{\theta}_n$ as a closed-form function of $X_{1:n}$.
 - Compute the bias of $\hat{\theta}_n$, and adjust $\hat{\theta}_n$ to get an unbiased estimator $\tilde{\theta}_n$.
 - Computing the variance of $\hat{\theta}_n$ and compare it with the CRB.

2^{o} : Estimating the median in a location family.

For any $\theta \in \mathbb{R}$, let \mathbb{P}_{θ} be the distribution of $\theta + Z$, where the distribution of Z is absolutely continuous, with (known) p.d.f. $f(\cdot)$ such that f(0) > 0, and such that 0 is the median:

$$\mathbb{P}\{Z < 0\} = \mathbb{P}\{Z > 0\} = \frac{1}{2}.$$

The k^{th} order statistic of $X_{1:n} := (X_1, ..., X_n)$, denoted with $X_{(k)}$, is defined as the k-th largest among $X_{1:n}$.¹ Assuming that n is odd, we define the sample median $\widehat{\text{Med}}_n$ of $X_{1:n}$ as the $(\frac{n+1}{2})^{\text{nd}}$ order statistic. Note that $\widehat{\text{Med}}_n$ is a reasonable candidate estimate for θ^* . (Could you explain why?)

(a) Show that Med_n is unbiased when f is symmetric, i.e. when f(-x) = f(x) for all $x \in \mathbb{R}$.

Hint. Use the tower rule: $\mathbb{E}[\widehat{Med}_n] = \mathbb{E}[\mathbb{E}[\widehat{Med}_n|Y]]$ for any random variable Y. Try to find a suitable random variable Y—supported on $\{1, ...n\}$ —for which $\mathbb{E}[\widehat{Med}_n|Y] = 0$ almost surely.

(b) Show that $\widehat{\text{Med}}_n$ is the MLE when Z has the standard Laplace distribution: $f(u) = \frac{1}{2}e^{-|u|}$. *Hint:* find the derivative of $\ell(u) := \log f(u)$? Does it matter that ℓ is not differentiable at 0?

¹Ties broken arbitrarily; note, however, that with probability 1 all X_i 's are different, and so ties do not happen.

(c') Compute the variance of $\widehat{\text{Med}}_n$ in this situation (i.e. Laplace distribution) in the cases n = 1 and n = 3. Compare with the Cramér-Rao bound.

Hint. Use the following fact: if $X_{1:n}$ is an i.i.d. sample from a law with c.d.f. $F_X(x)$, then the c.d.f. of its k^{th} order statistic is

$$F_{X_{(k)}}(x) = \sum_{j=0}^{k-1} \binom{n}{j} F_X(x)^{n-j} (1 - F_X(x))^j$$

Another useful fact is that $\widehat{\text{Med}}_n$ is shift-equivariant: if we shift the distribution by a constant $a \in \mathbb{R}$, then the distribution of $\widehat{\text{Med}}_n$ will simply be shifted in the same way. This allows to assume w.l.o.g. that $\mu_* = 0$ in your calculations.

(d) Find the asymptotic variance of $\widehat{\text{Med}}_n$ in the general situation, i.e. only assuming that f(0) > 0. To this end, use the so-called "delta-method," described as follows:

If $\hat{\theta}_n$ estimates $\theta \in \mathbb{R}$ in such a way that

$$\sqrt{n}(\widehat{\theta}_n - \theta) \underset{n \to \infty}{\leadsto} \mathcal{N}(0, \sigma^2),$$

and $g(\cdot)$ is differentiable at θ , then $\sqrt{n}[g(\widehat{\theta}_n) - g(\theta)] \xrightarrow[n \to \infty]{} \mathcal{N}(0, \sigma_g^2)$ with $\sigma_g^2 = \sigma^2 (g'(\theta))^2$.

What you can say about this in the light of the previous example (with the Laplacian density)?

(e) Give another example of a symmetric f(u) such that $\widehat{\text{Med}}_n$ does not attain the CRB in the corresponding location family.

3°: MLE for the ratio of two independent exponential distributions. Let $X \sim \mathsf{Exp}(\lambda)$ and $Y \sim \mathsf{Exp}(\mu)$ be independent, where $\mathsf{Exp}(\lambda)$ is the distribution with p.d.f.

$$\lambda e^{-\lambda x}, \quad x > 0.$$

Let Z = X/Y, and consider an i.i.d. sample $(Z_1, ..., Z_n)$ with each Z_i being distributed as Z.

(a) Without deriving the distribution of Z explicitly, argue that it depends only on $\theta := \mu/\lambda$, not on λ, μ separately.

Hint: for $\alpha > 0$, what is the distribution of αX ?

(b) Show that the p.d.f. of Z is

$$f(z|\theta) = \frac{\theta}{(z+\theta)^2}, \quad z > 0.$$

Does this distribution have an expectation?

Hint: you might want to start with the c.d.f.

(c) Show that $\hat{\theta}_n$, the MLE of θ from $Z_1, ..., Z_n$, satisfies the following equation:

$$\frac{1}{n}\sum_{i=1}^{n}F(Z_{i}|\widehat{\theta}_{n}) = \frac{1}{2}$$
(1)

where $F(\cdot|\theta)$ is the c.d.f. of Z. Using the properties of c.d.f., show that (1) has a *unique* solution.

(d) Comment on the above equation, explaining why the right-hand side has the factor $\frac{1}{2}$. To this end, show that for any continuous distribution \mathbb{P}_{θ} with c.d.f. $H(t;\theta)$, it holds that

$$\mathbb{E}_{T \sim \mathbb{P}_{\theta}}[H(T;\theta)] = \frac{1}{2}$$

Then explain the MLE equation in this context.

Hint: You may draw an analogy with the method of moments.

(e) Show that for the distribution whose p.d.f. you found in (b), θ also happens to be the median.