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Min-max optimization

Smooth min-max problem

in max f
iy e £+.)

X, Y are two convex sets, f is differentiable with \-Lipschitz gradient.

e Can be seen as a 2-player zero-sum game with payoff fns & f(x, y).

D. M. Ostrovskii Nonconvex-(non)concave min-max optimization 1/20



Min-max optimization

Smooth min-max problem

in max f
iy e £+.)

X, Y are two convex sets, f is differentiable with \-Lipschitz gradient.

e Can be seen as a 2-player zero-sum game with payoff fns & f(x, y).

Classical setup

f is convex-concave:

f(-,y) convex on X for any y € Y; f(x,-) concave on Y for any x € X.

e Extensively studied: von Neumann & Nash ('30s-'40s) — Korpelevich
(1977) — Nemirovski (2004) — modern Optim. & Machine Learning.
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Min-max optimization

Smooth min-max problem

iy )

X, Y are two convex sets, f is differentiable with \-Lipschitz gradient.

e Can be seen as a 2-player zero-sum game with payoff fns & f(x, y).

Classical setup

f is convex-concave:

f(-,y) convex on X for any y € Y; f(x,-) concave on Y for any x € X.

e Extensively studied: von Neumann & Nash ('30s-'40s) — Korpelevich
(1977) — Nemirovski (2004) — modern Optim. & Machine Learning.

We focus on a more challenging setup, incorporating nonconvexity into f.J
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App. #1: Robust system design

x — controls; y — inputs/state.

Nominal-value design Robust design

inf(x.v min max f(x
mip f(x.9) T e g Floy)
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App. #1: Robust system design

x — controls; y — inputs/state.

Nominal-value design Robust design

inf(x.v min max f(x
mip f(x.9) T e g Floy)

Concrete examples:
e designing a reliant transportation network with uncertain demand
(Sharma et al., 2009; An and Lo, 2015);
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App. #1: Robust system design

x — controls; y — inputs/state.

Nominal-value design Robust design

inf(x.v min max f(x
min £(x, 7) iy e (x,¥)

Concrete examples:
e designing a reliant transportation network with uncertain demand
(Sharma et al., 2009; An and Lo, 2015);

e adversarial attacks on neural networks (Goodfellow et al., 2015):

+0.007 x

“panda” “gibon”
57.7% confidence 99.3% confidence

min  ma 000, —€;) + R(9).
min H%;( (i — ) + R(0)
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App. #2: Minimization of a discrete maximum

min max  fi(x
xeX je{l,..K} (%),

o

can be recast as a nonconvex-affine (hence nonconvex-concave) problem:

i a ,F
IS (y, f(x))

where A is the standard simplex and f(x) = [A(x); ...; fk(x)] € RX.
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App. #2: Minimization of a discrete maximum

min max  fi(x
xeX je{l,..K} (x),

o

can be recast as a nonconvex-affine (hence nonconvex-concave) problem:

—

in ma , f
IS (y, f(x))

where A is the standard simplex and f(x) = [A(x); ...; fk(x)] € RX.

Example:
e max-min power control in MIMO for uniform QoS across users, (Nayebi

et al., 2017); in particular using deep learning (D'Andrea et al., 2019).

((x))‘ : 7 ((2))
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Challenges of min-max optimization

‘@: Convergence cannot be taken for granted! ‘

Smooth minimization (unconstrained)

min f(x)

X is a Euclidean space, f(-) is differentiable with A-Lipschitz gradient.

Gradient descent (GD) with constant stepsize:

Xt4+1 = Xt — %Vf(xt)

decreases f(x;) and converges at O(t~1/?) rate in terms of ||V f(x.)]|.
e Convex case: O(t™!) convergence in f(x;) — mi)rg f(x) and ||[Vf(x:)]-
xXe

Faster convergence O(t2) by Nesterov's algorithm (add momentum).

Similar results in the constrained setup (for projected GD & Nesterov).
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Challenges of min-max optimization (cont’d)

‘@: Convergence cannot be taken for granted! ‘

Smooth min-max optimization

i f(x,y). Vf is A-Lipschitz.
iy )rpeag/( (x,y) (Vf is A-Lipschitz.)

Projected Gradient Descent-Ascent (PGDA) with constant stepsizes:

1

Xt+1 Mx (Xt - vaf(xt’ Yt) )

0y (ye + 19, F (e ve)
Yit+1 Y{Yt T x VyT (Xt Yt

e Convergence not guaranteed even in the convex-concave scenario:
y wn

min max x
IxI<1 |yl<1

Vi(x,y) = [ﬂ is 1-Lipschitz, but PGDA

cycles on the boundary of the feasible set.
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Challenges of min-max optimization (cont’d)

‘@: No minimax theorem beyond the convex-concave case! ‘

e Convex-concave problems admit strong duality (a.k.a. minimax thm):
i = max f(x,y) } = max{w(y) = min f(x,y) } = F(x",y"
min {so(X) max (x,¥) max ¥(y) = minf(x,y) (x*,y")
where (x*, y*) is a (global) saddle point or Nash equilibrium, that is
f(x*,y) < f(x*,y") < f(x,y*), forany(x,y)e X xY.
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Challenges of min-max optimization (cont’d)

‘@: No minimax theorem beyond the convex-concave case! ‘

e Convex-concave problems admit strong duality (a.k.a. minimax thm):
i = max f(x,y) } = max{w(y) = min f(x,y) } = F(x",y"
min {so(X) max (x,¥) max ¥(y) = minf(x,y) (x*,y")
where (x*, y*) is a (global) saddle point or Nash equilibrium, that is
Fx",y) S F(x"y") < f(x,y"), forany (x,y) € X X Y.
e Common approach: z* = (x*, y*) satisfies the variational inequality
(F(z"),z" —z) <0 forall ze X x Y,
where F(z) := [Vif(x,y); =V f(x,y)].

~ -~

e Moreover: if Z satisfies that (F(Z2),z — z) < e forall z€ X x Y, then
p(x) = mino(x) < p(X)=ptx"] 2ly™) —d(y)  [minimax thm |
xe

<sup (F(2),z—z) < e. [convexity-concavity]
zeZ

e So, we can focus on (approximately) solving V.I.'s (Nemirovski, 2004).
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Challenges of min-max optimization (cont’d)

’@: No minimax theorem beyond the convex-concave case! ‘

When we give up convexity of (-, y), the minimax theorem does not apply:
[ = f inf .
min{y(x) max ()} # max min (x,¥)

e In fact, since ¢(-) is nonconvex, we cannot hope to minimize it globally.
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Challenges of min-max optimization (cont’d)

‘@: No minimax theorem beyond the convex-concave case! ‘

When we give up convexity of (-, y), the minimax theorem does not apply:
[ = f inf .
min{y(x) max ()} # max min (x,¥)

e In fact, since ¢(-) is nonconvex, we cannot hope to minimize it globally.

Stackelberg or Nash?

S: Focus on local minimizers or first-order stationary points of .

N: Focus on f, i.e. on local / first-order Nash equilibria (solutions to VI).

e If f(x,-) is concave, these approaches are equivalent (Lin et al., 2019).
e But if f(x,-) is nonconcave, they may even lead to different solutions!
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Challenges of min-max optimization (cont’d)

‘@: No minimax theorem beyond the convex-concave case! ‘

When we give up convexity of (-, y), the minimax theorem does not apply:
[ = f inf .
min{y(x) max ()} # max min (x,¥)

e In fact, since ¢(-) is nonconvex, we cannot hope to minimize it globally.

Stackelberg or Nash?

S: Focus on local minimizers or first-order stationary points of .

N: Focus on f, i.e. on local / first-order Nash equilibria (solutions to VI).

e If f(x,-) is concave, these approaches are equivalent (Lin et al., 2019).
e But if f(x,-) is nonconcave, they may even lead to different solutions!

y3 @)
min max xy + —

x€R |y|<2 3

*

x* = —1 unique minimizer & FSP of ¢(x).
(0,0) — unique VI solution; no local NEs.
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Challenge: nonsmoothness of ¢(x)

We still can evaluate ¢(x) and its subgradient £ = £(x) € Op(x) at any x.

e One can escape spurious saddle points—those of ¢(-)—by augmenting
first-order methods with random perturbations (Davis et al., 2021).

e So, let's focus on first-order stationary points: x € X : 9p(x) 3 0.

But what it means for x to be approximately stationary? J

e The norm of £ € Oy(x) is a poor criterion as it can be discontinuous:

o(x)=|x]:  0¢p(0)>0, but |Ve(x)|=1forx#0.
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Moreau envelope and e-FSP

Definition (Moreau envelope)

The Moreau envelope for A\-weakly convex function ¢ is

oa(x) = Lrpel)rg {(p(u) + A||u— X||2} .

e Moreau envelope for an A-weakly convex function ¢ is A-smooth.

Definition (e-approximate first-order stationary point)
If (-,y) is A-smooth Yy € Y, then x € X: ||[Vpa(x)|| < ¢ is called e-FSP.

e Motivation:
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Moreau envelope and e-FSP

Definition (Moreau envelope)

The Moreau envelope for A-weakly convex function ¢ is

oa(x) = Lrpel)rg {cp(u) + A||u— X||2} .

e Moreau envelope for an A-weakly convex function ¢ is A-smooth.

Definition (e-approximate first-order stationary point)
If (-,y) is A-smooth Yy € Y, then x € X: ||[Vpa(x)|| < ¢ is called e-FSP.

e Motivation:

Lemma (Lin et al., 2019)—mistake corrected in Ostrovskii et al. (2021b).

If [Vipr(x)|| < e for x € X, then xt := argmm{cp( )+ Aju—x]||?} satisfies
ex

[xT — x| < and  AllxT — Mx[x" — £€]|| < & for some & € dp(xT).

<=
2)

Here f(x,-) may be nonconcave and f(-, y) may be nonconvex.
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Problem formulation, finally

Given £ > 0 and smoothness parameter A, find e-FSP for the problem

[ f .
mig )
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Nonconvex-concave case

State of the art (early 2019)

There is an algorithm returning an e-FSP in O(¢~*) gradient computations.

!

Theorem (Ostrovskii et al., 2021b)

There is an algorithm returning an e-FSP in O(e~3) gradient computations.

e Complexity bound improves to O(¢72) if f(x, -) is strongly concave,
and this is optimal (Zhang et al., 2021). General optimality expected.

e Non-Euclidean projections; X, Y constrained; € unknown in advance.

e Analysis exploits the known results on first-order methods with inexact
oracle, and so is way easier than in concurrent work.
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Nonconvex-concave case: insight

Key idea: emulate proximal point method for the primal problem:

. A
e = argrmin { i) = ) + §1x = [P}
X

e With a max-oracle for f(x, ), we would be done in O(c~2) iterations,
always remaining stationary in y, by running Nesterov on ¢;(x).

e Regularize f(x,y) by O(ey)-term, preserving its y-gradient up to e:

) A
(ccvess) = argmin {mar [ ) = 5 7] + 31—l

—angmax { () o= mip | ) + =52 = 35 117

Here 1+(y) is A-smooth and O(4)-strongly concave = can be
maximized in O(6~%/?) by Nesterov — inexact gradient for ¢;(x).

e Choosing § = £ gives the result.

D. M. Ostrovskii Nonconvex-(non)concave min-max optimization 11 /20



Nonconvex-nonconcave case: new challenge

From now on, assume V,f(-) is Lipschitz: for any x’,x € X and y',y € Y

Hvxf(xla)/) - fo(x,y)
[Vif(x,y") = Vif(x,y)

)‘HX/ - XH?

<
< ply =yl

Thus, X is the weak convexity modulus of ¢, while p is a coupling parameter.

Lyapunov analyses of first-order methods for minimizing max-functions
(PGDA, subgradient, proximal-point method) need full maximization.

No problem when Y is a singleton. Extend this to the case of a small Y?
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Our strategy
i ) atsome y € Y.

Let fk(x,y) be the k-order Taylor approximation of f(x,
)i

~

o fi(x, a multivariate polynomial—global maximization for k <

is
e f(x,-) is constant for k = 0 and affine for k = 1;

e fr(x,-) is quadratic for k = 2, can be maximized on a ball via
first-order methods (Carmon and Duchi, 2020).

Surrogate problem:

min max f;
xelx ye\)/< k(X y)-

(D: Prove that any e-FSP of the surrogate problem remains O(s)-FSP for
the initial problem when the diameter of Y is smaller than D > 0.

We expect D = O(eP) for some p = p(k) > 0.

13 /20

(@: Find some -FSP in the surrogate problem by an efficient algorithm
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Accuracy of Taylor approximation

e Assuming k"-order regularity in y, i.e. that V;‘k f(x,-) is px-Lipschitz

V5 (") = Vs F ()| < pully” = v,
yields

kak—H

febeoy) = o0l < Gy J
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Accuracy of Taylor approximation

e Assuming ktM-order regularity in y, i.e. that ka f(x,-) is px-Lipschitz

IV F (6, v') = Vs f O )l < pilly” = vl
yields

|ﬁ<(X7y) - f(Xay)| <

kak—i-l
(k+ 1) J

e Similarly, assuming Vi‘kf is Lipschitz in x ( “higher-order interaction”)
IVhf (X, ) = Vif ()| < orllX' = x|,

allows to control how well fok(x,y) approximates V,f(x,y).

Lemma (Approximation error for V,f.)

204Dk
2 —— for k > 1
Hvxf(xay)_vxfk(x7y)H < k!
min{uD, 09} for k =0.
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Accuracy of Taylor approximation (cont'd)

We have a problem:
o =-FSP definition requires A-weak convexity of p(x) = max,cy f(x,y).
e So to even talk about e-FSP for the surrogate, we have to ensure that

~

= f
P(x) max (X, ),

the surrogate primal function, is also A-weakly convex.
e Bilinear coupling (BC), i.e. f(x,y) = g(x) + (Ax,y) — h(y), ensures
Vi (xy) [= Vig(x) = Vi (x.9)] = Vidi(x,y)

for all y, so in this case (-, y) is A-smooth and ¢ is \-weakly convex.

X22f\| < 0o we have the following result:

More generally, assuming HV';:F

Lemma (Weak convexity of @, simplified)

Vi (-, y) is A-Lipschitz ($ is A-weakly convex) for A = A + O(DK) ~ A.
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Main result: critical diameter

Theorem (Ostrovskii et al., 2021a).
Given k > 1, let x* be e-FSP for the surrogate problem, and assume that

Dk+1 Dk
min{ ApkD uD+ll{k>O}nk }55

(k+ 1)1 k!

Then x* is 6e-FSP for the initial problem.

In other words, reduction to the surrogate problem works for D < D with

1
_ 2\ k+1
D := max E, k-<€)+ .
7 APk

_ N — € _
e For k=1 we have D = S VAVTIE Same rate as for k = 1 except for

a better constant factor in the strong coupling regime p = v/ Ap1.
e For k =2 and in the nontrivial regime ¢ < 1, we have D = %.
e Similar picture for k > 2: coupling-independent D = D(e) when ¢ < 1.

16 / 20
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Coupling-dependent bound

Proposition 1. For any x* € X such that || V@an(x*)|| < &, one has

oDk
k!

min{uD, 00} +¢ for k=0.

uD + +e for k>1,

IVEAXT) = Vor ()| 5
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Coupling-independent bound

Proposition 2. Moreau envelope gradients for ¢ and ¢ are uniformly close:

)\ Dk+1
IV@a(x) — Vor(x)]| < h for all x € X.
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Coupling-independent bound: the proof

Proposition 2. Moreau envelope gradients for ¢ and ¢ are uniformly close:

)\ Dk+1
IV@a(x) — Vor(x)]| < h for all x € X.

Proof:

1°. By the first-order optimality conditions for p)(x) and @, (x) we have
Vr(x) =20(x — xT),  V@a(x) = 20(x — &),
where xT and T are the proximal-point mappings of x as per ¢ and ¢:

X+ = argmin{p(u) + Au— x|2}, &+ = argmin{3(u) + Au — x|},
ueX ueX

Thus [[Vor(x) = V@a(x)|| = 2\|| kT — xT||. Let us bound [|&F — xT|].
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Coupling-independent bound: the proof (cont'd)

Proposition 2. Moreau envelope gradients for ¢ and ¢ are uniformly close:

by Dk+1
IV@A(x) = Vor(x)| S h for all x € X.

Proof (cont’d):

2°. Functions ¢(-) 4+ Al - —x]||? and @(-) + A|| - —x|| are A-strongly convex
and minimized at x™ and X correspondingly, hence

IART =X < o(®F) + KT = x[12 = o(xF) = Allx™ = x]|?,
ST = xF2 < @) + Al = x[I? = p(&F) = AIFT — x|
Summing the two inequalities results in

AISF = xH2 < @) = o(xF) + o(81) — p(*7) <2 sup |B(x) = @(x)]-
xXe
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Coupling-independent bound: the proof (cont'd)

Proposition 2. Moreau envelope gradients for ¢ and ¢ are uniformly close:

by Dk+1
IV@A(x) = Vor(x)| S h for all x € X.

Proof (cont’d):
2°. Functions ¢(-) 4+ Al - —x]||? and @(-) + A|| - —x|| are A-strongly convex
and minimized at x™ and X correspondingly, hence
IART =X < o(®F) + KT = x[12 = o(xF) = Allx™ = x]|?,
IART = XTI < A(F) + Al = x|? = @(&F) = A% — x|
Summing the two inequalities results in

AIRT = xF[2 < @(xT) — p(x) + p(87) = p(*F) < 25up [2(x) — ().
xeX
kak—i-l

3°. We arrive at |@(x) — < sup [f(x,y) — f(x,y)| < 25—,
e arrive at [(x) — ¢(x)| ySlelglk(Xy) (¥l (k1)
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Smooth minimization boot camp

min f(x) J

XEX

where X is a Euclidean space, f(-) is differentiable with Lipschitz gradient:
IVF(x) = VA < Lx = x|, Vx,x €X.

e V?f exists almost everywhere and bounded by L = Descent Lemma:
f(x) < f(xe)+ (VF(xt),x — x¢) + %LHX — Xt||2.

e The RHS is a quadratic. Choosing x;11 to minimize it we get

Xt+1 — Xt — %Vf(xt) J

Gradient descent method generates a sequence xi, x2, ... of such updates.
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Smooth minimization boot camp (cont'd)

Gradient descent (GD)

Xt+1 = Xt — %Vf(xt)

Descent Lemma

F(x) < Flxe) + (VF(xe),x = xe) + $A]x = el

o Objective value decreases at each step:

f(xes1) < Fxe) — & | VF(xe)|?
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Smooth minimization boot camp (cont'd)

Gradient descent (GD)

Xt+1 = Xt — %Vf(xt)

Descent Lemma

F(x) < Flxe) + (VF(xe),x = xe) + $A]x = el

o Objective value decreases at each step:

F(xer) < F) = o IVFGIP < -0 < F(xa) = 5 D IVFGe)IP

Tt
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Smooth minimization boot camp (cont'd)

Gradient descent (GD)

Xt+1 — Xt — %Vf(xt)

Descent Lemma

f(x) < f(xe) + (VF(xt),x — x¢) + %)\Hx — Xt||2.

e Objective value decreases at each step:

F(resn) < Fx) = VG < F(x) = 7 min [V F(x) .

= O(t1/?) convergence in gradient norm—i.e. O(¢~2) complexity.
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Smooth minimization boot camp (cont'd)

Gradient descent (GD)

Xt+1 — Xt — %Vf(xt)

Descent Lemma

f(x) < f(xe) + (VF(xt),x — x¢) + %)\Hx — Xt||2.

e Objective value decreases at each step:

F(resn) < Fx) = VG < F(x) = 7 min [V F(x) .

= O(t1/?) convergence in gradient norm—i.e. O(¢~2) complexity.

e Improves to O(¢71), in obj. value and grad. norm, if f is convex.
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Smooth minimization boot camp (cont'd)

Gradient descent (GD)

Xt+1 — Xt — %Vf(xt)

Descent Lemma

f(x) < f(xe) + (VF(xt),x — x¢) + %)\Hx — Xt||2.

e Objective value decreases at each step:

F(resn) < Fx) = VG < F(x) = 7 min [V F(x) .

= O(t1/?) convergence in gradient norm—i.e. O(¢~2) complexity.
e Improves to O(¢71), in obj. value and grad. norm, if f is convex.

e Can do better: O(¢71/2) via Nesterov’s method, and this is optimal.
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Convex-concave min-max optimization as V.I.

e Convex-concave problems admit strong duality (a.k.a. minimax thm):
i = max f(x,y) } = max{w(y) = min f(x,y) } = F(x",y"
mm{cp(X) max f(x,y)y = max (¥ (y) = min f(xy) (<" y")

xeX
where (x*, y*) is a (global) saddle point or Nash equilibrium, that is
f(x*,y) < f(x*,y") < f(x,y"), forany (x,y)e X xY.
e Common approach: z* = (x*, y*) satisfies a variational inequality
(F(z"),z" —2z) <0 forall ze X x Y,
where F(z) := [Vif(x,y); =V f(x,y)].
o Indeed: if z; = (x¢, y:) satisfies (F(z:),z: —z) < e Vz € X X Y, then
p(xt) = o(x7) S p(xt) == ) — ()
= (e, y) = fOeye)  + F (e, ve) — £(X,0e)
[convexity-concavity] < (—Vf(x¢, ye). ve — ¥) + (Vif (Xe, ve), Xe — X)
< (F(zt),ze — 2) < e.
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Coupling-dependent bound

Proposition 1. For any x* € X such that || V@an(x*)|| < &, one has

oDk
k!

min{uD, 00} +¢ for k=0.

uD + +e for k>1,

IVEAXT) = Vor ()| 5
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Coupling-dependent bound: the proof (cont'd)

Proposition 1. For any x* € X such that || V@an(x*)|| < &, one has
oDk
n D+ +e for k>1
[Vor() = Vel £ 4 777
min{uD,00} +¢ for k=0.

Proof: (assuming X = X and k > 1 for simplicity)
1°. Now let x™, X" be the proximal-point mappings of x* as per ¢, ¢:
Vir(x*) = 20(x* — xT),  V@a(x*) = 20(x* — &),
Thus [V (x*) = V@r(x*)[| = 2A[|%F — x|
2°. By the A-strong convexity of () + A|| - —x*||? and Cauchy-Schwarz:

FAEE =X <AL = x| + (%) = o(xT) = AllxT —x7||2
SAMRT = X2+ o(&8F) = o(xF) = JAILT —xT1%
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Coupling-dependent bound: the proof (cont'd)

Rearranging, we get
A& =xT)? <BAILT —x*[1)? +2A[p(K) = p(xT) = 3AILT —xT|7].

39. Since x* is an &-FSP for @y, the Moreau criterion characterization gives

8% 'l < o and €] < = for some € € (")

Using the first inequality,
AIRF = x*[)? <222+ 22 [p(RT) — p(x) = AT — x|
4°. By convexity of ¢(-) + 3A|| - —&T[|2, for arbitrary ¢ € dp(&) we get
P(RT) = p(x™) = 3 I8T = xTP < (68T = xT),

whence (A&7 — xT[[)? < 2e2 +2X [{£, 87 — xT) — IAI3T — xT)?].
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Coupling-dependent bound: the proof (cont'd)

. whence (A[[&T — xT)2 <262+ 2) [(&, 87 — xT) — INI&T — xT|?].
5°. Applying Cauchy-Schwarz twice we get
(AIRT = xFI1)2 < 422+ 44 (€87 — x¥) = IAI&T = x¥|12] + 4)i€ - ¢
< 4e? + 4117 + 41— €)%
Recall that € € 9p(%1) was chosen to guarantee ||€]| < e. Thus we get
(NI&* = x*[)? < 8% + 4€ — €2
6°. It remains to bound || — £||%. The “subgradient of max" rule implies:
¢ e conv <{fok(§<+,y), y € Argmax,cy z?k(>?+,y)}> .
Besides, we can choose £ = V,f(%F,y*) for y* € Argmax,cy f(R7,y).
Hence, choosing ¥ € Argmax, ¢y [V f (87, y) — Vi (R, y*)|| we get
I1E% — ¥ < NVxh(RF,7) = Vuf (57, y7)l|
SVAF(RF,7) = Vuf (R, y)|| + | VR F (K7, y*) = Vi (37,y7)].

~~

~
<pD < %O’k Dk
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Hessian approximation

Lemma (Weak convexity of @)

Assume ||V§:;22f|| < 7. Then Vyfi(-,y) is A-Lipschitz with
27, Dk

A=A+ . 1{k > 1}.

In fact, under some mild measurability condition it suffices to assume
that Vka(-,y) is Tx-Lipschitz for all Yy € Y, so we don't need f € Ck+2.
ykx
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