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Ultimate goal
Recover a harmonic oscillation with s < n frequencies:
S
Xy = Z Ce™ ' t=0,..,n,
k=1

where {wy, ...,ws} C [0,27) are unknown, from noisy observations
yt:Xt—i_O-gt; gtNN(O,].)
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Ultimate goal

Recover a harmonic oscillation with s < n frequencies:
S
t
Xp = 5 Ce™ . t=0,...,n,
k=1

where {wy, ...,ws} C [0,27) are unknown, from noisy observations
yt:Xt—i_O-é-t; gtNN(O,l)

State of the art: Atomic Soft Thresholding (Tang et al., 2012)
achieves the optimal risk
o?slog(n)
n
if freqs are O(1/n)-separated.
:( But without separation assumption, only slow rate O(1/+/n).

:) We achieve a near-optimal rate without separation assumption:

02s*log?(n)

n
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Preliminaries

Goal: recover discrete signal x € R” from a noisy observation

Ye=X+0&, t=1,..n.

¢ = (&)7_, is standard Gaussian, and x, = f(t) for some f : R — R.
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Preliminaries

Goal: recover discrete signal x € R” from a noisy observation

yt:Xt—’_O-éta t:07"'7n7

¢ = (&), is standard Gaussian, and x; = f(t) for some f : R — R.

e Quadratic risk:
~ 1 ~ 5
R(X,x) := ;]E[Hx — x|3].

e We expect R(x, x) = O(a?/n).
e Linear estimators: X = ®(y) for some linear operator ®.
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Example: recovery from a subspace

Recovery of the mean: suppose x; = i for some p € R.
e Estimate 1 from n repeated observations = empirical mean:

x== Zyt

Linear estimator, and R(X, x) = 0’2/17.



Example: recovery from a subspace

Recovery of the mean: suppose x; = i for some p € R.
e Estimate 1 from n repeated observations = empirical mean:

x== Zyt

Linear estimator, and R(X, x) = az/n.

Equivalently, x € S, 1-d subspace spanned by all-ones vector.

e X = projs(y), and R(X, x) = 02/n since projs(cf) ~ N(0,0?).
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Example: recovery from a subspace

Recovery of the mean: suppose x; = i for some p € R.
e Estimate 1 from n repeated observations = empirical mean:

x== Zyt

Linear estimator, and R(X, x) = az/n.

Equivalently, x € S, 1-d subspace spanned by all-ones vector.

e X = projs(y), and R(X, x) = 02/n since projs(cf) ~ N(0,0?).

Works for any subspace! Suppose x € S of dimension s.

e As before, take X = projg(y), then

Optimal risk up to a constant!
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Optimality of linear estimators

When x € S, there exists a linear Xs with a near-optimal risk.
Xs is easy to construct if S is known.
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Optimality of linear estimators

When x € S, there exists a linear Xs with a near-optimal risk.
Xs is easy to construct if S is known.

For any X C R", define the minimax risk and the linear minimax risk:

R(X):=infsupR(x,x) < R"™X):= inf supR(X,x).

X xeX X=®(y) xeX



Optimality of linear estimators

When x € S, there exists a linear Xs with a near-optimal risk.
Xs is easy to construct if S is known.

For any X C R", define the minimax risk and the linear minimax risk:

R(X):=infsupR(x,x) < R"™X):= inf supR(X,x).

X xeX X=®(y) xeX
When X is a subspace, R""(X) < cR(X) =

we can search for a near-optimal estimator x° among the linear ones!

e Donoho (1990): the above holds with ¢ = 1.2 for quadratically
convex and orthosymmetric sets, for example, ellipsoids.

e Juditsky & Nemirovski (2016): if X is known,

X° can be computed by convex optimization!



Adaptive estimation

If “good” X is unknown, x° still exists, but not accessible directly.

e For example, x € {X,}, large family of “good” sets (subspaces).

Question: Is it possible to “mimick” x°, i.e. construct an adaptive
estimator X = X(y) with a comparable risk?
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Adaptive estimation
If “good” X is unknown, x° still exists, but not accessible directly.
e For example, x € {X,}, large family of “good” sets (subspaces).

Question: Is it possible to “mimick” x°, i.e. construct an adaptive
estimator X = X(y) with a comparable risk?

o Adaptive estimator X approaches R(x°, x) without knowing x:
R(x,x) ~ R(x°, x).
e We hope to find such X by a data-driven (and efficient) search

over a class of linear estimators.
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Filters

In signal processing, we usually assume time-invariance of some kind.
Recall that we estimate the signal on the regular grid:

Yt:Xt+U§t7 tE {_n,...,o,...,n}.

e Consider time-invariant linear estimators: convolution of y with
a filter ¢ € B, = { “vanish outside [0, m] for some m < n" }:

S(\t:[tp*y]t ::ZSOTYPT, te [—n+m,n].
7=0




Filters

In signal processing, we usually assume time-invariance of some kind.

Recall that we estimate the signal on the regular grid:
Ve =xt+0&, te{-n,..0, .. n}

e Consider time-invariant linear estimators: convolution of y with
a filter ¢ € By, = { "vanish outside [0, m] for some m < n"}:

Se=le*yle=> @Yeer, tE[-n+mn]
7=0
e Goal: recovery on [0, n] via previous observations, with the risk
1 2
Rn(()O7X) = ;E[H [X — P Y]g HZ}’

where [x]5 = [x,, ..., xp].
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Main assumption: LTI recoverability

We assume that the class of linear filtering estimators is powerful.

Definition. x is p-recoverable if there exists a ¢° € B, ), satisfying

2
R(¢°, x) < %

Adaptive signal denoising: find @ = @(y) s.t. Ru(P, x) = Ra(¢°, x).

n/2

—_

-n n/2 0
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Main assumption: LTI recoverability
We assume that the class of linear filtering estimators is powerful.

Definition. x is p-recoverable if there exists a ¢° € B, ), satisfying

2
R(6°,x) < UTQ

Adaptive signal denoising: find @ = @(y) s.t. Ru(P, x) = Ra(¢°, x).

Bias-variance decomposition:
1 o 21 1 o 1ny2 . 02 o o2
;E[H [x—¢ *Y]OHz} :;H [x—¢ >kX]O ||2+7E[H[¢ *g]on]

e reproduction of the signal: £ [| [x — ¢° * x|g ||§} < Ze
e small £>-norm of the oracle: [|¢°||3 < <.
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Adaptive estimator

Let F be the Discrete Fourier transform operator on [0, n:

o
exp< WUT), 0</,7<n.

Fir =
J n+1

1
vn+1

We propose an adaptive estimator: X = @ * y, where © € B, is

peargming |y —¢xyllls [ Fellh < o/Vn
(PEBn ~"~ 7 ~ ~"~ -~
sample analogue of R,(¢°,x) regularization of the filter

Compare with the spectral Lasso:
X € argmin {Ily =61z = IFx]l < 17>}
xeR"

e No sparsity. The “dictionary matrix” Y s.t. o xy = Y(Fp) is
not RIP and scales differently with o. Standard techniques fail,



Statistical bound

Recall p-recoverability of x: there exists a ¢° € B/, such that

O'2Q

Ra(¢°,x) < p
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Statistical bound

Recall p-recoverability of x: there exists a ¢° € B/, such that

2
R(6°,x) < %

Theorem (Main Result)
If x is p-recoverable, the filter ¥ satisfies

a0
—(

R.(p,x) <
(®,x) p

o+ log n).

(actually a bound w.h.p.)

Price of adaptation is ¢ = we would like p to be as small as possible.
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Statistical bound: naive approach

e There exists a ¢° € B, for which [|¢°]|3 < £, R,(¢°,x) < Z2.
e Suppose that p is known, and search for ¢°:

1 ~ 1 o o o?
“ly == yls < “ly—¢ xy|3 = Ra(6°,x) + 7H§H§ + ()

e OK at this step: Q,(¢°,x) is small, o2||¢||5 subtracted. But:

~ . 1
6 arguin { 2ty — 6 413 ol <

¢€Bn/2

3

e ¢° is feasible, so that

1 ~ 2 1 ~ 2 0'2 2 20'2 -~

Zx - = |y - ~ 7 g b6,

= Gyl = lly = Syl = T EIE ) + (5 )
R”(¢O7X)

{>-constraint too weak to control (¢, g/b\* &) because (E is random.
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Statistical bound: key insight

0'2Q

e There exists a ¢° € B, for which [¢°]|3 < £, R,(¢°,x) < Z2.
e Instead of ¢°, let's mimick ©° := (¢° x ¢°) € B,. Can show:

2 Q2
17l < Z,
2 2
R,(¢°, x) < ge )
n

n/2 —n

. I

-n n/2 0 n -n 0 n
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Statistical bound: key insight

e There exists a ¢° € B,> for which [¢°]|3 < £, R,(¢°,x) < %.

Instead of ¢°, let's mimick ¢° := (¢° * ¢°) € B,. Can show:

2
2 Y

[Fell} < =,
n

020

Ro(°,x) <
(¥°,x) < -

e Pay an extra p, but obtain a bound on the /;-norm (in Fourier).

Problem term (£, ¢ * £): uniform bound + extreme points.
Adaptive estimator ¢ can be formulated as

~ ) 1 2 0
c 1y — M2 Foll, < S
P argmm{nll[y o*ylolls |l wlll_ﬁ}

wEeB,

or the penalized problem (useful when o is unknown).
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Time-invariant subspace assumption

Definition. Subspace S of the space of sequences (..., x_1, Xg, X1, -..)
is called time-invariant if it is preserved under x; — X;_1.

13/23



Time-invariant subspace assumption

Definition. Subspace S of the space of sequences (..., x_1, Xg, X1, -..)
is called time-invariant if it is preserved under x; — X;_1.

Time-Invariant Subspace Assumption (TISA): x belongs to some
time-invariant subspace of dimension s < n.

TISA < exp. polynomials. x satisfying TISA is an exponential
polynomial of order s, with frequencies depending on S.
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Time-invariant subspace assumption

Definition. Subspace S of the space of sequences (..., x_1, Xg, X1, -..)
is called time-invariant if it is preserved under x; — X;_1.

Time-Invariant Subspace Assumption (TISA): x belongs to some
time-invariant subspace of dimension s < n.

TISA < exp. polynomials. x satisfying TISA is an exponential
polynomial of order s, with frequencies depending on S.

e Example: harmonic oscillation

S
X = g Cee™ ', TtcZ.
k=1
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Time-invariant subspace assumption (cont.)

Theorem
Let x satisfy TISA with some s < n.
Then, x is o-recoverable with o = s?log n.
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Time-invariant subspace assumption (cont.)

Theorem
Let x satisfy TISA with some s < n.
Then, x is p-recoverable with o = s%log n.

Lower bound: o(s) = s. Achievable if we allow for bilateral filters:

n/2
A I
-n -n/2 0 n/2 n
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Time-invariant subspace assumption (cont.)

Theorem
Let x satisfy TISA with some s < n.
Then, x is o-recoverable with o = s?log n.

Lower bound: o(s) = s. Achievable if we allow for bilateral filters:

Theorem
Let x satisfy TISA with some s < n.
Then, x is p-recoverable, with respect to bilateral oracle, with p = s.

14 /23



Denoising harmonic oscillations

Goal: recover x on [—n, n] when frequencies are unknown:

s
X, = E Ckeuu;ﬂ'7
k=1

Atomic Soft Thresholding (Tang & Recht, 2012):

2
R < o°slogn
n
if frequencies are separated, but slow rate O(1/+/n) if not.
Adaptive filtering:
24 1002
R < o°s*logn
n

without any separation assumptions. s* improves to s:

e in the separated case via Beurling's majorant (Moitra, 2014).

e in the central zone [—n/2, n/2] via bilateral filters.
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Optimization problem

For some r > 0, we want to solve:

Opt = min {f(9) =y =y + ¢l |Fapli <7} (P)

o Well-structured feasible set — ¢,/¢1-norm ball, prox in O(nlog n).
e First-order oracle can be computed in O(nlogn).

e Low-accuracy solutions: sufficient to find a solution ¢ satisfying

. 5 1
(@) == f(p) — Opt < —Opt.

= proximal gradient methods.
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Change of variables

Opt = min {f(¢) = lly =y *lz: IFaplh < r}. (P)

u = 222) — feasible set is the unit ball of the (complex) ¢;-norm.

r

y*p=yxF,(ru)
:‘F.n_l{‘/__én[y;on].fén [02n;.7:,7_1(ru)}}:¢4u,

where [x; 0,] is the concatenation with the zero vector of length n,
and e is the element-wise product. Computed in O(nlogn) by FFT.

f(p) = F(u) = llyll3 — (v, Au) — (Au,y) + (u, AT Au),
VF(u)=2(—ATy + AT Au)

<

(everything is complex-valued, hiding some conjugates).
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Proximal mapping

So, now (P) is reformulated as a well-structured optimization problem
Opt = min {F(u) : |u|1 <1}, (P
ueCn

where we can compute F(u) and VF(u) in O(nlogn).
We also must be able to compute the proximal mapping:

prox, (g) := argmin {(g, v) + Du(v)} ,
Ivlli<1

where
D,(v) = w(v) —w(u) — (Vw(u),v — u)

is the Bregman divergence, and w(u) is a “good” proximal function:
smooth, 1-strongly convex, with computable prox, and with a small

R? = max w(u).
Jullh<1
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Proximal functions

Euclidean prox:

1 1
w(w) = SlulE = Dyv) = 5lv—ul3

Corresponding prox is Euclidean projection on the complex ¢;-ball.
e Computable in O(nlogn), R?> = O(1).

e Smoothness measured in ¢>-norm.
“Suitable” prox:

1 elnn

W(U):VHUHga P:1+m> Y= p

e Computable in O(nlogn), R? = O(log n).
e Smoothness measured in {,-norm, g = logn = |||, < C|| - || -
19/23



Solving the optimization problem

Let L be the Lipschitz constant of VF(u) (precomputed from data).

Fast Gradient Method (Nesterov & Nemirovski, 2013)
Initialization: vy = 0; Gy = 0.
Fort=0,1,... do

a) w; = proxg (%)

b 2(t+2)
(t+1)(t+4)"

(

(b)

() Veyr :=Tews + (1 — 72)us
(d)

()

Tt =

~ . t+2 VF(vey1
d) Vipr = prox,, (i (e )>.

L

2
e Ut+]_ = Tt?t:l»l + (1 - Tt)ut, Gt+]_ = Gt + %VF(VLLH[)

Similar to Fast Gradient Descent. Convergence guarantee:

LR?
Fu) — FF < =
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Experiments

—Lasso (AST)
—Pen. LSR

06 012 025 05 1 2 4
SNR™!

0.025

0.

Figure: Signal and image denoising in different scenarios, 1-d (left) and

2-d (right).
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Demonstration

True signal Observations

b

MP recovery

Brodatz D75, SNR=1. Similar MSE, but Lasso tends to over-smooth.
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Conclusion

We give an efficiently computable and statistically near-optimal
construction of adaptive estimator for time-invariant signals.

Main idea: adaptation to the well-performing linear estimator.

As a consequence, we get fast rates of denoising harmonic oscillations
without the frequency separation assumption.

Thank you for your attention!
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Adaptive estimation: classical example

Suppose x is s-sparse, i.e. comes from S spanned by {e;, ..., €.}
e Linear oracle x° = projs(y):

o?s

QX% x) = —=
e Soft-thresholding estimator (Lasso):
>A<=arg%lin{||x—)/||§+A||X||1}‘ (1)
xeR"?

If X is well-chosen, X is adaptive: not knowing S, it satisfies
Q(X, x) < Q(x°, x) log(n),
e X is non-linear but “looks” like a linear estimator, and can be
computed by searching over linear estimators!
e Indeed, (1) is separable, and we can write X = ¢ - y, where

@ = argmin {f,(¢) = lly —y - ol + My - @lla} -
peR?
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Better complexity estimate

After k iterations of FGM, we have for (P?):

2
K2
We get O(k~!) error for the initial problem (P):

R
f(ox) < Opt + L

f2(¢r) < Opt? +

Additional structure: since Opt > 0,

() — Opt® = (f(0x) — Opt)(f (i) +Opt) > 20pt(f (k) — Opt),

and we get an “optimistic” O(k~2) error provided that Opt > 0:
2

_ < -
f(px) — Opt < 200iK2

25 /23



	Appendix

