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Ultimate goal

Recover a harmonic oscillation with s � n frequencies:

xt =
s∑

k=1

Cke
ıωk t , t = 0, ..., n,

where {ω1, ..., ωs} ⊆ [0, 2π) are unknown, from noisy observations

yt = xt + σξt , ξt ∼ N (0, 1).
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Ultimate goal

Recover a harmonic oscillation with s � n frequencies:

xt =
s∑

k=1

Cke
ıωk t , t = 0, ..., n,

where {ω1, ..., ωs} ⊆ [0, 2π) are unknown, from noisy observations

yt = xt + σξt , ξt ∼ N (0, 1).

State of the art: Atomic Soft Thresholding (Tang et al., 2012)
achieves the optimal risk

σ2s log(n)

n
if freqs are O(1/n)-separated.

:( But without separation assumption, only slow rate O(1/
√
n).

:) We achieve a near-optimal rate without separation assumption:

σ2s4 log2(n)

n
.
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Preliminaries

Goal: recover discrete signal x ∈ Rn from a noisy observation

yt = xt + σξt , t = 1, ..., n.

ξ = (ξt)
n
t=1 is standard Gaussian, and xt = f (t) for some f : R→ R.
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Preliminaries

Goal: recover discrete signal x ∈ Rn from a noisy observation

yt = xt + σξt , t = 0, ..., n,

ξ = (ξt)
n
t=1 is standard Gaussian, and xt = f (t) for some f : R→ R.

• Quadratic risk:

R(x̂ , x) :=
1

n
E
[
‖x̂ − x‖2

2

]
.

• We expect R(x̂ , x) = O(σ2/n).

• Linear estimators: x̂ = Φ(y) for some linear operator Φ.
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Example: recovery from a subspace

Recovery of the mean: suppose xt ≡ µ for some µ ∈ R.
• Estimate µ from n repeated observations ⇒ empirical mean:

x̂ ≡ 1

n

n∑
t=1

yt .

Linear estimator, and R(x̂ , x) = σ2/n.

Equivalently, x ∈ S, 1-d subspace spanned by all-ones vector.

• x̂ = projS(y), and R(x̂ , x) = σ2/n since projS(σξ) ∼ N (0, σ2).

Works for any subspace! Suppose x ∈ S of dimension s.

• As before, take x̂ = projS(y), then

R(x̂ , x) =
σ2s

n
.

Optimal risk up to a constant!
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Optimality of linear estimators

When x ∈ S, there exists a linear x̂S with a near-optimal risk.
x̂S is easy to construct if S is known.

For any X ⊆ Rn, define the minimax risk and the linear minimax risk:

R̄(X ) := inf
x̂

sup
x∈X

R(x̂ , x) ≤ R̄ lin(X ) := inf
x̂=Φ(y)

sup
x∈X

R(x̂ , x).

When X is a subspace, R̄ lin(X ) ≤ cR̄(X ) ⇒

we can search for a near-optimal estimator x̂o among the linear ones!

• Donoho (1990): the above holds with c = 1.2 for quadratically
convex and orthosymmetric sets, for example, ellipsoids.

• Juditsky & Nemirovski (2016): if X is known,

x̂o can be computed by convex optimization!
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Adaptive estimation

If “good” X is unknown, x̂o still exists, but not accessible directly.

• For example, x ∈ {Xα}, large family of “good” sets (subspaces).

Question: Is it possible to “mimick” x̂o , i.e. construct an adaptive
estimator x̂ = x̂(y) with a comparable risk?

• Adaptive estimator x̂ approaches R(x̂o , x) without knowing x :

R(x̂ , x) ≈ R(x̂o , x).

• We hope to find such x̂ by a data-driven (and efficient) search
over a class of linear estimators.
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Filters

In signal processing, we usually assume time-invariance of some kind.
Recall that we estimate the signal on the regular grid:

yt = xt + σξt , t ∈ {−n, ..., 0, ..., n}.

• Consider time-invariant linear estimators: convolution of y with
a filter ϕ ∈ Bm = { “vanish outside [0,m] for some m ≤ n”}:

x̂t = [ϕ ∗ y ]t :=
m∑
τ=0

ϕτyt−τ , t ∈ [−n + m, n].

m

n0-n m-n
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Filters

In signal processing, we usually assume time-invariance of some kind.
Recall that we estimate the signal on the regular grid:

yt = xt + σξt , t ∈ {−n, ..., 0, ..., n}.

• Consider time-invariant linear estimators: convolution of y with
a filter ϕ ∈ Bm = { “vanish outside [0,m] for some m ≤ n”}:

x̂t = [ϕ ∗ y ]t :=
m∑
τ=0

ϕτyt−τ , t ∈ [−n + m, n].

• Goal: recovery on [0, n] via previous observations, with the risk

Rn(ϕ, x) :=
1

n
E
[∥∥ [x − ϕ ∗ y ]n0

∥∥2

2

]
,

where [x ]ba = [xa, ..., xb].
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Main assumption: LTI recoverability

We assume that the class of linear filtering estimators is powerful.

Definition. x is %-recoverable if there exists a φo ∈ Bn/2 satisfying

Rn(φo , x) ≤ σ2%

n
.

Adaptive signal denoising: find ϕ̂ = ϕ̂(y) s.t. Rn(ϕ̂, x) ≈ Rn(φo , x).

n/2

n0-n n/2
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Main assumption: LTI recoverability

We assume that the class of linear filtering estimators is powerful.

Definition. x is %-recoverable if there exists a φo ∈ Bn/2 satisfying

Rn(φo , x) ≤ σ2%

n
.

Adaptive signal denoising: find ϕ̂ = ϕ̂(y) s.t. Rn(ϕ̂, x) ≈ Rn(φo , x).

Bias-variance decomposition:

1

n
E
[∥∥ [x − φo ∗ y ]n0

∥∥2

2

]
=

1

n

∥∥ [x − φo ∗ x ]n0
∥∥2

2
+
σ2

n
E
[∥∥ [φo ∗ ξ]n0

∥∥2

2

]
• reproduction of the signal: 1

n

[∥∥ [x − φo ∗ x ]n0
∥∥2

2

]
≤ σ2%

n
,

• small `2-norm of the oracle: ‖φo‖2
2 ≤

%
n
.
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Adaptive estimator

Let F be the Discrete Fourier transform operator on [0, n]:

Fjτ =
1√
n + 1

exp

(
2πijτ

n + 1

)
, 0 ≤ j , τ ≤ n.

We propose an adaptive estimator: x̂ = ϕ̂ ∗ y , where ϕ̂ ∈ Bn is

ϕ̂ ∈ argmin
ϕ∈Bn

 ‖[y − ϕ ∗ y ]n0‖2
2︸ ︷︷ ︸

sample analogue of Rn(φo ,x)

: ‖Fϕ‖1 ≤ %/
√
n︸ ︷︷ ︸

regularization of the filter


Compare with the spectral Lasso:

x̂ ∈ argmin
x∈Rn

{
‖[y − x ]n0‖2

2 : ‖Fx‖1 ≤ ‖Fxo‖1

}
.

• No sparsity. The “dictionary matrix” Y s.t. ϕ ∗ y = Y (Fϕ) is
not RIP and scales differently with σ. Standard techniques fail.
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Statistical bound

Recall %-recoverability of x : there exists a φo ∈ Bn/2 such that

Rn(φo , x) ≤ σ2%

n
.

Theorem (Main Result)
If x is %-recoverable, the filter ϕ̂ satisfies

Rn(ϕ̂, x) ≤σ
2%

n
(% + log n).

(actually a bound w.h.p.)

Price of adaptation is % ⇒ we would like % to be as small as possible.
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Statistical bound: naive approach

• There exists a φo ∈ Bn/2 for which ‖φo‖2
2 ≤

%
n

, Rn(φo , x) ≤ σ2%
n
.

• Suppose that % is known, and search for φo :

φ̂ ∈ argmin
φ∈Bn/2

{
1

n
‖[y − φ ∗ y ]n0‖

2
2 : ‖φ‖2

2 ≤
%

n

}
.

• φo is feasible, so that

1

n
‖y − φ̂ ∗ y‖2

2 ≤
1

n
‖y − φo ∗ y‖2

2 = Rn(φo , x) +
σ2

n
‖ξ‖2

2 + 〈...〉.

• OK at this step: Qn(φo , x) is small, σ2‖ξ‖2
2 subtracted. But:

1

n
‖x − φ̂ ∗ y‖2

2 =
1

n
‖y − φ̂ ∗ y‖2

2 −
σ2

n
‖ξ‖2

2︸ ︷︷ ︸
Rn(φo ,x)

+〈...〉+
2σ2

n
〈ξ, φ̂ ∗ ξ〉.

`2-constraint too weak to control 〈ξ, φ̂ ∗ ξ〉 because φ̂ is random.
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Statistical bound: key insight

• There exists a φo ∈ Bn/2 for which ‖φo‖2
2 ≤

%
n

, Rn(φo , x) ≤ σ2%
n
.

• Instead of φo , let’s mimick ϕo := (φo ∗ φo) ∈ Bn. Can show:

‖Fϕo‖2
1 ≤

%2

n
,

Rn(ϕo , x) ≤ σ2%2

n
.

n/2

n0-n n/2
=⇒

n

n0-n
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Statistical bound: key insight

• There exists a φo ∈ Bn/2 for which ‖φo‖2
2 ≤

%
n

, Rn(φo , x) ≤ σ2%
n
.

• Instead of φo , let’s mimick ϕo := (φo ∗ φo) ∈ Bn. Can show:

‖Fϕo‖2
1 ≤

%2

n
,

Rn(ϕo , x) ≤ σ2%2

n
.

• Pay an extra %, but obtain a bound on the `1-norm (in Fourier).

• Problem term 〈ξ, ϕ̂ ∗ ξ〉: uniform bound + extreme points.

• Adaptive estimator ϕ̂ can be formulated as

ϕ̂ ∈ argmin
ϕ∈Bn

{
1

n
‖[y − ϕ ∗ y ]n0‖

2
2 : ‖Fϕ‖1 ≤

%√
n

}
or the penalized problem (useful when % is unknown).
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Time-invariant subspace assumption

Definition. Subspace S of the space of sequences (..., x−1, x0, x1, ...)
is called time-invariant if it is preserved under xt 7→ xt−1.

Time-Invariant Subspace Assumption (TISA): x belongs to some
time-invariant subspace of dimension s ≤ n.

TISA ⇔ exp. polynomials. x satisfying TISA is an exponential
polynomial of order s, with frequencies depending on S.

• Example: harmonic oscillation

xt =
s∑

k=1

Cke
ıωk t , τ ∈ Z.
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Time-invariant subspace assumption (cont.)

Theorem
Let x satisfy TISA with some s ≤ n.
Then, x is %-recoverable with % = s2log n.

Lower bound: %(s) = s. Achievable if we allow for bilateral filters:

n/2

n0-n -n/2 n/2
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Time-invariant subspace assumption (cont.)

Theorem
Let x satisfy TISA with some s ≤ n.
Then, x is %-recoverable with % = s2log n.

Lower bound: %(s) = s. Achievable if we allow for bilateral filters:

Theorem
Let x satisfy TISA with some s ≤ n.
Then, x is %-recoverable, with respect to bilateral oracle, with % = s.

14 / 23



Denoising harmonic oscillations

Goal: recover x on [−n, n] when frequencies are unknown:

xτ =
s∑

k=1

Cke
ıωkτ ,

Atomic Soft Thresholding (Tang & Recht, 2012):

Rn ≤
σ2s log n

n

if frequencies are separated, but slow rate O(1/
√
n) if not.

Adaptive filtering:

Rn ≤
σ2s4 log2n

n
without any separation assumptions. s4 improves to s2:
• in the separated case via Beurling’s majorant (Moitra, 2014).
• in the central zone [−n/2, n/2] via bilateral filters.
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Optimization problem

For some r > 0, we want to solve:

Opt = min
ϕ∈Cn

{
f (ϕ) = ‖y − y ∗ ϕ‖2

2 : ‖Fnϕ‖1 ≤ r
}
. (P)

• Well-structured feasible set – `2/`1-norm ball, prox in O(n log n).

• First-order oracle can be computed in O(n log n).

• Low-accuracy solutions: sufficient to find a solution ϕ̃ satisfying

ε(ϕ̃) := f (ϕ̃)−Opt .
1

n
Opt.

⇒ proximal gradient methods.
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Change of variables

Opt = min
ϕ∈Cn

{
f (ϕ) = ‖y − y ∗ ϕ‖2

2 : ‖Fnϕ‖1 ≤ r
}
. (P)

u := Fn(ϕ)
r
⇒ feasible set is the unit ball of the (complex) `1-norm.

y ∗ ϕ = y ∗ F−1
n (ru)

= F−1
n

{
F3n [y ; 0n] • F3n

[
02n;F−1

n (ru)
]}

= Au,

where [x ; 0n] is the concatenation with the zero vector of length n,
and • is the element-wise product. Computed in O(n log n) by FFT.

f (ϕ) = F (u) = ‖y‖2
2 − 〈y ,Au〉 − 〈Au, y〉+ 〈u,ATAu〉,

∇F (u) = 2(−ATy +ATAu)

(everything is complex-valued, hiding some conjugates).
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Proximal mapping

So, now (P) is reformulated as a well-structured optimization problem

Opt = min
u∈Cn
{F (u) : ‖u‖1 ≤ 1} , (P ′)

where we can compute F (u) and ∇F (u) in O(n logn).
We also must be able to compute the proximal mapping:

proxu (g) := argmin
‖v‖1≤1

{〈g , v〉+ Du(v)} ,

where
Du(v) := ω(v)− ω(u)− 〈∇ω(u), v − u〉

is the Bregman divergence, and ω(u) is a “good” proximal function:
smooth, 1-strongly convex, with computable prox, and with a small

R2 = max
‖u‖1≤1

ω(u).
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Proximal functions

Euclidean prox:

ω(u) =
1

2
‖u‖2

2 ⇒ Du(v) =
1

2
‖v − u‖2

2.

Corresponding prox is Euclidean projection on the complex `1-ball.

• Computable in O(n logn), R2 = O(1).

• Smoothness measured in `2-norm.

“Suitable” prox:

ω(u) = γ‖u‖pp, p = 1 +
1

ln n
, γ =

e ln n

p
.

• Computable in O(n log n), R2 = O(log n).

• Smoothness measured in `q-norm, q ≈ log n ⇒ ‖ · ‖q ≤ C‖ · ‖∞.
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Solving the optimization problem

Let L be the Lipschitz constant of ∇F (u) (precomputed from data).

Fast Gradient Method (Nesterov & Nemirovski, 2013)
Initialization: u0 = 0; G0 = 0.
For t = 0, 1, ... do

(a) wt = prox0

(
Gt

L

)
.

(b) τt := 2(t+2)
(t+1)(t+4)

.

(c) vt+1 := τtwt + (1− τt)ut
(d) v̂t+1 := proxwt

(
t+2

2
∇F (vt+1)

L

)
.

(e) ut+1 := τt v̂t+1 + (1− τt)ut , Gt+1 := Gt + t+2
2
∇F (vt+1)

Similar to Fast Gradient Descent. Convergence guarantee:

F (ut)− F ∗ .
LR2

t2
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Experiments
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Figure: Signal and image denoising in different scenarios, 1-d (left) and
2-d (right).
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Demonstration

True signal Observations

MP recovery Lasso recovery

Brodatz D75, SNR=1. Similar MSE, but Lasso tends to over-smooth.
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Conclusion

We give an efficiently computable and statistically near-optimal
construction of adaptive estimator for time-invariant signals.

Main idea: adaptation to the well-performing linear estimator.

As a consequence, we get fast rates of denoising harmonic oscillations
without the frequency separation assumption.

Thank you for your attention!
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Adaptive estimation: classical example

Suppose x is s-sparse, i.e. comes from S spanned by {ei1 , ..., eis}.
• Linear oracle x̂o = projS(y):

Q(x̂o , x) =
σ2s

n
• Soft-thresholding estimator (Lasso):

x̂ = argmin
x∈Rn

{
‖x − y‖2

2 + λ‖x‖1

}
. (1)

If λ is well-chosen, x̂ is adaptive: not knowing S, it satisfies

Q(x̂ , x) ≤ Q(x̂o , x) log(n),

• x̂ is non-linear but “looks” like a linear estimator, and can be
computed by searching over linear estimators!

• Indeed, (1) is separable, and we can write x̂ = ϕ̂ · y , where

ϕ̂ = argmin
ϕ∈Rn

{
fy (ϕ) := ‖y − y · ϕ‖2

2 + λ‖y · ϕ‖1

}
.
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Better complexity estimate

After k iterations of FGM, we have for (P2):

f 2(ϕk) ≤ Opt2 +
LR2

k2
.

We get O(k−1) error for the initial problem (P):

f (ϕk) ≤ Opt +

√
LR

k
.

Additional structure: since Opt ≥ 0,

f 2(ϕk)−Opt2 = (f (ϕk)−Opt)(f (ϕk) +Opt) ≥ 2Opt(f (ϕk)−Opt),

and we get an “optimistic” O(k−2) error provided that Opt > 0:

f (ϕk)−Opt ≤ LR2

2Optk2
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