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Problem setup

Statistical learning problem

Given some loss /: Y x R — R, find a minimizer 0, € RY of expected risk:

0. € Argmin L(0) := E[¢(Y, X 0)],
OeRA

where expectation E[-] is w.r.t. the unknown distribution P of (X, Y) € R x .
Since P is unknown, 6, can’t be found; instead, it is estimated from i.i.d. sample:

(X1, Y1), ooos (Xny Ya) ~ P (iid.)

Y only depends (non-linearly) on 7 = X @, a linear combination of inputs.

e Random-design classification, ) = {0, 1}, and regression, ) = R.

Performance of an estimate # measured by excess risk L(A) — L(6.).
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e Empirical risk minimization: replace L(#) with empirical risk:
b, € Argmin oY, X:"0)
R { Z

Also called M-estimation in statistics.

® Special case: conditional quasi maximum likelihood estimator (qMLE):

U(y,n) = —log p,(y)

for some density p,(y) parametrized by 7.
e “Quasi”: the true distribution P might not belong to this model.

Extend classical theory of gMLE, holding in the limit n — oo with fixed d,
to finite-sample setup.

® Encompass model misspecification and non-likelihood M-estimators.
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Motivation 1: Classical asymptotic theory*

e Local regularity assumptions: L(#) sufficiently smooth at 6., and
H:= V2L(6,) > 0.
o Gradient covariance G := E[Vol(Y, X T0,)Vol(Y,XT0,)T], and let
M :=H Y2GH /2.
desr := tr(M) is the effective dimension. In well-specified models:
G=H = M=1l; = dg=d.
e In the limit n — oo, Central Limit Theorem & Taylor Expansion give:
ViIHY2(8, — 0,) ~ N(0, M),
nl[HY2(@, - 0.)[2 ~ N0, M), 2n(L(B,) - L(6.)) ~ N (0, M)>.

{13 - L), IH72(0, — 0.2} = 0 (LreEl2)),

*[Borovkov, 1998; van der Vaart, 1998; Lehmann and Casella, 2006].
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Motivation 2: Random-design linear regression, |

e Gaussian model Y = N(X T8, 52) leads to quadratic loss and risk:
oY, XT0) = (Y - XT0),
L(0) — L(6.) = 3IIH2(0 — 0.)]%,
La(8) = La(6:) = 5IHY2(8 — 6.)I* + (VLa(6.),6 — 6.)
zero-mean
e In particular, at any 6 we have V2L(0) = H and V2L,(#) = H, with
H=E[XXT], H,= %Z;’:l X,-X,-T.

Theorem T: Estimation of a sample covariance matrix [Vershynin, 2010]

Assume H~1/2X is subgaussian, i.e., has tails lighter than N (i, l4), and
n 2 d+log(1/0).
Then, with probability at least 1 — ¢ it holds:

0.5H < H, < 2H.
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Motivation 2: Random-design linear regression, |l

Theorem 0: Finite-sample risk bound for linear regression [Hsu et al., 2012]

Assume that H=1/2X and G~1/2V/,(Y, X T6.) are subgaussian, and

n 2 d+ log(1/9).

Then w.p. at least > 1 — 9,

L(Bn) = L(6.) S [IHY2(8, = 0.)IP S [IHT>VLa(0.)IP S

derr log(1/9)
n

Proof sketch:
1. Since VL,(0,) =0, we have |[HF2(8, — 6,)]12 = |[H7 2V L,(6,)]].
2. Combining with Theorem T,
L(0,) = L(0.) = IHY2(B, — 0.)[* < 2[H2VL,(6.)]%

3. Since G~Y/2VL,(8,) is the average of n i.i.d. subgaussian vectors,

|2 < deff |Og(1/5)
~Y n N

IH7Y2VL,(6,)) ]
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Towards the general case

e Generally, risk is not quadratic, and Hessians are not constant:
V2L(0) = H(0), V?L,(0) =H,(0).
® To extend the previous argument, we must control the precision of local

quadratic approximation of L,(#) and L(f) around 6..

e We exploit self-concordance, a concept introduced in [Nesterov and
Nemirovski, 1994] in the theory of interior-point methods, and brought to
the statistical learning context in [Bach, 2010] to study logistic regression.
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Self-concordant losses

We always assume that ¢(y,n) is convex in the second argument.

Definition. ¢(y,n) is self-concordant (SC) if V(y,n) € Y x R it holds

12 (y,m)| < CLe(y, m)]*2.

e While the above definition is homogeneous in 7, the next one is not:

Definition. /(y, n) is pseudo self-concordant (PSC) if instead it holds

16 (y,m)| < Clyy,m)-

® PSC losses are somewhat more common than SC ones.

e However, we will see that obtaining optimal rate for PSC losses requires
somewhat larger sample size.
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Example 1: Generalized linear models

Conditional negative log-likelihood of Y given n = X "6 in the form
Uy, m) = —yn+a(n) — bly),
where a(n) is called the cumulant, and is given by

a(n) = Iog/ e1thl)gy.
Y

This defines the density p,(y) oc e7+21) such that a(n) = E,, [Y], and
(D y.m) = a9 (n) =, [(Y ~Ep, V)], s>2

SC/PSC specify a relation between 2nd and 3rd central moments of p,(-)
PSC: Logistic regression and any GLM for classification () = {0, 1}) since

|a" ()] < Ep, (Y = Ep, [YD*| < Ep, [(Y — E,, [Y])’] = 2" (n).

PSC: Poisson regression: Y ~ Poisson(e”), then a(n) = exp(n).
SC: Exponential-response model: Y ~ Exp(n), n > 0, a(n) = — log(n).
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Example 2: Robust estimation

Loss ¢(y,n) = ¢(y — n) with ¢(t) convex, even, 1-Lipschitz, and ¢”(0) = 1.

25
= Huber loss
e Huber loss 20 — log(cosh(y —m) |}
15 — Vl+y-n?-1
1'2/27 |t| < ]_7 g — Self-concordant
o(t) = ~ 10
Tt—1/2, [t| > 1.
0.5
¢’ (t) discontinuous at +1. oo
235 2 1 0 1 2 3
y—n

PSC: Pseudo-Huber losses: ¢(t) = logcosh(t), ¢(t) = v1+t2—1.
SC: Fenchel dual of the log-barrier ¢(u) = —log(1 — u?)/2 on [-1,1]:

VIifar -1
V1442 —1+log (Hﬂ

1
t) ==
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Basic result

Recall that in the general case, we have the Hessian process H(6), given by
H(6) := E[¢" (Y, X T0)XXT] = E[X(0)X(6) "],
where X () := [¢"(Y,XT6)]*/2X is the curvature-scaled design.

Theorem 1: Finite-sample excess risk bound for self-concordant losses

Assume that the loss is SC, and G™1/2V{,(Y, X T6,) and H(6,)~/2X(6.)
are subgaussian. Whenever

n 2 d+log(1/9) V des d log(1/6),

with probability 1 — § it holds

LBn) — L(6.) S [HY2(G, — 0.)| 5 erio8C/0), *)

© Distribution conditions are local (only at 6..);
® Large sample complexity — scaling as the product O(d.ss d).
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Analysis: Key observation

Given H(0) = V2L(6), consider Dikin ellipsoids of L(6) at 6y:
©(00,r) == {0 : [|H(00)"/*(0 — 60) 1> < r*}.

Key Observation. Suppose that H,(0) ~ H,(0.) w.h.p. for any 6 € © (6., r).
Then, 6, € Argmin L,(0) can be localized to ©(0., r) once

IH(8.) 2V La(0.)]* < 1,

Proof sketch:
e Indeed, by definition of 8, L,(8,) < L,(6,). Assume 6, ¢ ©,(6,,r).

e Pick 0, € [0,,0,] on the border of ©,(0,,r). Still, L,(7,) < La(6,).

0> Ln(01) = La(04) = (VLa(6:), 0 — 02) + [Ha(62)'2(00 — 0.)]2.
~r? (by Theorem T)

e By Cauchy-Schwarz, we arrive at ||H(6,) Y2V L,(0,)|]> > r?.

Contradiction!
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Analysis: Recap

e Once 6, has been localized to the neighborhood of 8, where L,(9) is
quadratic, we can mimick the argument for linear regression.

® | ocalization is guaranteed once
[H(0.) "2V La(6,)]° < 72,
which leads to the second threshold for n:

1
Nz drlog(1/0).

® Now the question is:

What is the radius r of the Dikin ellipsoid in which H,(0) ~ H,(6.)? J

- Short answer: we can afford r? ~ 1/d using self-concordance.
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Analysis: Self-concordance at play

What is the radius r of the Dikin ellipsoid in which H,(0) ~ H,(0.)? J

1. Recall that
1 n
H,(0)= = 2'(Y:, XT0)X: X.
(0) - E (Yi, X: 0)

i=1

2. Integrating [ (y,n)| < [¢"(y,n)]2 from . = X6, ton = XT0,

1 '(y, 1

! < ! |

(14 ["(y, )] 211 — n4])? P (= (y )2 I = ns])?
1 'Y, XT0) 1

v < " T < [V :
(14 [(X(6.),0 —6.))2 ~ ¢"(Y, XT0.) = (1= [(X(6.),0 — 60.)])2
3. The ratio is bounded if |<)~<(9*),9 —6.)| < c<1,ie., by Cauchy-Schwarz,

IH(0.)"2X(0.)]|- [H(0.) (0 = 0.)| < ¢ = |rz — | W

~Vd r

-
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Improved result

Theorem 2: Improved sample complexity for self-concordant losses

Assume the loss is SC, G™1/2V/,(Y, XT4,) is subgaussian, and H(#)~1/2X(0)
is subgaussian in the unit Dikin ellipsoid of L(6) at 6,:

©(6:,1) = {6 [[H(8:)"/%(6 — 6)Il < 1.

Then for (x) it is sufficient that

n 2 dlog(d/d) V deslog(1/6),

Main idea:

® Sample complexity n 2 derd in Theorem 1 is due to Hessian approximation
in the small Dikin ellipsoid with r = O(1/v/d) rather than r = O(1).

® We need to prove that H,(0) =~ H,(0.) for 6 € ©(0,,1). To do this, we
combine self-concordance with a covering argument.
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Covering the Dikin ellipsoid

R— T e N

1. It is rather easy to prove first that H(0) is near-constant on ©(6,,1).
2. By SC, H,(0) is near-constant in smaller ellipsoids ©(f,1/v/d).

3. Now cover ©(f.,1) by ©(0,1/+/d) with 8 in the epsilon-net N, and control
uniform deviations H,(#) from H(6) on N.. OK since log |N:| = O(d log d).
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Pseudo self-concordant losses

® Because of the "incorrect” power of £ in PSC, we need an extra condition:
E[XX "] < pE[¢"(Y,XT0.)XX].
for some p > 0. This condition is standard in logistic regression [Bach, 2010].

e \We obtain similar results, but with p times worse sample complexity.

e Worst-case bounds on p can be exponentially bad [Hazan et al., 2014].
However, this is not the case in practice [Bach, 2010].
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Conclusion and perspectives

We use self-concordance — a concept from optimization — to obtain statistical
results — near-optimal rates in finite-sample regimes in some statistical models.
Perspectives:

® Regularized estimators.

® |terative algorithms: stochastic approximation, Quasi-Newton, ...

® Other models: covariance matrix estimation with logdet loss, ...

Thank youl!
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Analysis: Recap (full)

e Once 5,, is in neighborhood of 6, where L,(6) is quadratic, we're done:
Lo(8n) — La(6:) S Ha(02)Y2(8n — 0.)]% < [H,Y2(6.)V La(0:)|1%:

by Theorem T, as long as n > d + log(1/4),

H7 200V L(0.)12 = [H72(0.) VL, (0. 5 “roE0)

o~

Similarly for L(6,) — L(6.).

® Localization is guaranteed once \|H;1/2(9*)VL,,(0*)H2 < r?, which leads to
the second threshold for n:

1
nz = i log(1/0).

® Now the question is:

What is the radius r of the Dikin ellipsoid in which H,(0) ~ H,(6.)? J

D. Ostrovskii, F. Bach Finite-sample Analysis of M-estimators using Self-concordance



