Finite-sample Analysis of *M*-estimators using Self-concordance

Dmitrii M. Ostrovskii, Francis Bach

INRIA-CWI Workshop 2018 INRIA, Paris

Problem setup

Statistical learning problem

Given some loss $\ell: \mathcal{Y} \times \mathbb{R} \to \mathbb{R}$, find a minimizer $\theta_* \in \mathbb{R}^d$ of expected risk:

$$\theta_* \in \underset{\theta \in \mathbb{R}^d}{\operatorname{Argmin}} L(\theta) := \mathbf{E}[\ell(Y, X^{\top}\theta)],$$

where expectation $\mathbf{E}[\cdot]$ is w.r.t. the unknown distribution \mathcal{P} of $(X,Y) \in \mathbb{R}^d \times \mathcal{Y}$. Since \mathcal{P} is unknown, θ_* can't be found; instead, it is estimated from **i.i.d. sample**:

$$(X_1, Y_1), ..., (X_n, Y_n) \sim \mathcal{P}$$
 (i.i.d.)

- Y only depends (non-linearly) on $\eta = X^{\top}\theta$, a linear combination of inputs.
- Random-design classification, $\mathcal{Y} = \{0,1\}$, and regression, $\mathcal{Y} = \mathbb{R}$.
- Performance of an estimate $\widehat{\theta}$ measured by excess risk $L(\widehat{\theta}) L(\theta_*)$.

Goal

• Empirical risk minimization: replace $L(\theta)$ with empirical risk:

$$\widehat{\theta}_n \in \mathop{\rm Argmin}_{\theta \in \mathbb{R}^d} \left\{ L_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(Y_i, X_i^\top \theta) \right\}.$$

Also called *M*-estimation in statistics.

• Special case: conditional quasi maximum likelihood estimator (qMLE):

$$\ell(y,\eta) = -\log p_{\eta}(y)$$

for some density $p_{\eta}(y)$ parametrized by η .

ullet "Quasi": the true distribution ${\mathcal P}$ might **not** belong to this model.

Goal

Extend classical theory of qMLE, holding in the limit $n \to \infty$ with fixed d, to **finite-sample** setup.

• Encompass model **misspecification** and non-likelihood *M*-estimators.

Motivation 1: Classical asymptotic theory*

• Local regularity assumptions: $L(\theta)$ sufficiently smooth at θ_* , and

$$\mathbf{H} := \nabla^2 L(\theta_*) \succ 0.$$

• Gradient covariance $\mathbf{G} := \mathbf{E}[\nabla_{\theta}\ell(Y, X^{\top}\theta_*) \nabla_{\theta}\ell(Y, X^{\top}\theta_*)^{\top}]$, and let

$$M := H^{-1/2}GH^{-1/2}$$
.

 $d_{\text{eff}} := \text{tr}(\mathbf{M})$ is the **effective dimension**. In well-specified models:

$$G = H \Rightarrow M = I_d \Rightarrow d_{eff} = d.$$

• In the limit $n \to \infty$, Central Limit Theorem & Taylor Expansion give:

$$\begin{split} \sqrt{n} \boldsymbol{H}^{-1/2} (\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_*) \rightsquigarrow \mathcal{N}(0, \boldsymbol{\mathsf{M}}), \\ n \| \boldsymbol{H}^{1/2} (\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_*) \|^2 \rightsquigarrow \mathcal{N}(0, \boldsymbol{\mathsf{M}})^2, \quad 2 n (L(\widehat{\boldsymbol{\theta}}_n) - L(\boldsymbol{\theta}_*)) \rightsquigarrow \mathcal{N}(0, \boldsymbol{\mathsf{M}})^2. \end{split}$$

$$\left\{L(\widehat{\theta}_n) - L(\theta_*), \, \|\mathbf{H}^{-1/2}(\theta_n - \theta_*)\|^2\right\} = O\left(\frac{d_{\mathsf{eff}} \log(1/\delta)}{n}\right).$$

*[Borovkov, 1998; van der Vaart, 1998; Lehmann and Casella, 2006].

Motivation 2: Random-design linear regression, I

• Gaussian model $Y = \mathcal{N}(X^{\top}\theta, \sigma^2)$ leads to quadratic loss and risk:

$$\begin{split} \ell(Y, X^{\top}\theta) &= \frac{1}{2\sigma^2} (Y - X^{\top}\theta)^2, \\ L(\theta) - L(\theta_*) &= \frac{1}{2} \|\mathbf{H}^{1/2} (\theta - \theta_*)\|^2, \\ L_n(\theta) - L_n(\theta_*) &= \frac{1}{2} \|\mathbf{H}_n^{1/2} (\theta - \theta_*)\|^2 + \underbrace{\langle \nabla L_n(\theta_*), \theta - \theta_* \rangle}_{\text{zero-mean}} \end{split}$$

• In particular, at any θ we have $\nabla^2 L(\theta) \equiv \mathbf{H}$ and $\nabla^2 L_n(\theta) \equiv \mathbf{H}_n$ with

$$\mathbf{H} = \mathbf{E}[XX^{\top}], \quad \mathbf{H}_n = \frac{1}{n} \sum_{i=1}^n X_i X_i^{\top}.$$

Theorem T: Estimation of a sample covariance matrix [Vershynin, 2010]

Assume $\mathbf{H}^{-1/2}X$ is subgaussian, i.e., has tails lighter than $\mathcal{N}(\mu,\mathbf{I}_d)$, and

$$n \gtrsim d + \log(1/\delta)$$
.

Then, with probability at least $1-\delta$ it holds:

$$0.5H \leq H_n \leq 2H$$
.

Motivation 2: Random-design linear regression, II

Theorem 0: Finite-sample risk bound for linear regression [Hsu et al., 2012]

Assume that $\mathbf{H}^{-1/2}X$ and $\mathbf{G}^{-1/2}\nabla\ell_{\theta}(Y,X^{\top}\theta_{*})$ are subgaussian, and

$$n \gtrsim d + \log(1/\delta)$$
.

Then w.p. at least $\geq 1 - \delta$,

$$L(\widehat{\theta}_n) - L(\theta_*) \lesssim \|\mathbf{H}^{1/2}(\widehat{\theta}_n - \theta_*)\|^2 \lesssim \|\mathbf{H}^{-1/2}\nabla L_n(\theta_*)\|^2 \lesssim \frac{d_{\mathsf{eff}}\log(1/\delta)}{n}.$$

Proof sketch:

- 1. Since $\nabla L_n(\widehat{\theta}_n) = 0$, we have $\|\mathbf{H}_n^{1/2}(\widehat{\theta}_n \theta_*)\|^2 = \|\mathbf{H}_n^{-1/2}\nabla L_n(\theta_*)\|^2$.
- 2. Combining with Theorem T,

$$L(\widehat{\theta}_n) - L(\theta_*) = \frac{1}{2} \|\mathbf{H}^{1/2}(\widehat{\theta}_n - \theta_*)\|^2 \le 2 \|\mathbf{H}^{-1/2} \nabla L_n(\theta_*)\|^2;$$

3. Since $\mathbf{G}^{-1/2}\nabla L_n(\theta_*)$ is the average of *n* i.i.d. subgaussian vectors,

$$\|\mathbf{H}^{-1/2}\nabla L_n(\theta_*)\|^2 \lesssim \frac{d_{\mathsf{eff}}\log(1/\delta)}{n}.$$

Towards the general case

• Generally, risk is not quadratic, and Hessians are not constant:

$$\nabla^2 L(\theta) = \mathbf{H}(\theta), \quad \nabla^2 L_n(\theta) = \mathbf{H}_n(\theta).$$

- To extend the previous argument, we must control the precision of **local** quadratic approximation of $L_n(\theta)$ and $L(\theta)$ around θ_* .
- We exploit **self-concordance**, a concept introduced in [Nesterov and Nemirovski, 1994] in the theory of interior-point methods, and brought to the statistical learning context in [Bach, 2010] to study logistic regression.

Self-concordant losses

We always assume that $\ell(y, \eta)$ is convex in the second argument.

Definition. $\ell(y, \eta)$ is self-concordant (SC) if $\forall (y, \eta) \in \mathcal{Y} \times \mathbb{R}$ it holds

$$|\ell_{\eta}^{\prime\prime\prime}(y,\eta)| \leq C[\ell_{\eta}^{\prime\prime}(y,\eta)]^{3/2}.$$

• While the above definition is homogeneous in η , the next one is not:

Definition. $\ell(y, \eta)$ is **pseudo self-concordant (PSC)** if instead it holds

$$|\ell'''_{\eta}(y,\eta)| \leq C\ell''_{\eta}(y,\eta).$$

- PSC losses are somewhat more common than SC ones.
- However, we will see that obtaining optimal rate for PSC losses requires somewhat larger sample size.

Example 1: Generalized linear models

Conditional negative log-likelihood of Y given $\eta = X^T \theta$ in the form

$$\ell(y,\eta) = -y\eta + a(\eta) - b(y),$$

where $a(\eta)$ is called the **cumulant**, and is given by

$$a(\eta) = \log \int_{\mathcal{Y}} e^{y\eta + b(y)} dy.$$

This defines the density $p_{\eta}(y) \propto e^{y\eta+b(y)}$ such that $a(\eta) = \mathbf{E}_{p_{\eta}}[Y]$, and

$$\ell_{\eta}^{(s)}(y,\eta) = a^{(s)}(\eta) = \mathbf{E}_{\rho_{\eta}}[(Y - \mathbf{E}_{\rho_{\eta}}Y)^{s}], \quad s \geq 2.$$

SC/PSC specify a relation between 2nd and 3rd central moments of $p_{\eta}(\cdot)$

PSC: Logistic regression and any GLM for classification $(\mathcal{Y} = \{0,1\})$ since

$$|a'''(\eta)| \leq \mathsf{E}_{\rho_{\eta}}[(Y - \mathsf{E}_{\rho_{\eta}}[Y])^3| \leq \mathsf{E}_{\rho_{\eta}}[(Y - \mathsf{E}_{\rho_{\eta}}[Y])^2] = a''(\eta).$$

PSC: **Poisson regression:** $Y \sim \text{Poisson}(e^{\eta})$, then $a(\eta) = \exp(\eta)$.

SC: Exponential-response model: $Y \sim \text{Exp}(\eta), \ \eta > 0, \ a(\eta) = -\log(\eta).$

Example 2: Robust estimation

Loss $\ell(y,\eta) = \varphi(y-\eta)$ with $\varphi(t)$ convex, even, 1-Lipschitz, and $\varphi''(0) = 1$.

Huber loss

$$arphi(t) = egin{cases} t^2/2, & |t| \leq 1, & rac{2}{5} \ au t - 1/2, & |t| > 1. \end{cases}^{1.5}$$

 $\varphi''(t)$ discontinuous at ± 1 .

PSC: Pseudo-Huber losses: $\varphi(t) = \log \cosh(t)$, $\varphi(t) = \sqrt{1+t^2} - 1$.

SC: Fenchel dual of the log-barrier $\phi(u) = -\log(1 - u^2)/2$ on [-1, 1]:

$$arphi(t) = rac{1}{2} \left\lceil \sqrt{1+4t^2} - 1 + \log\left(rac{\sqrt{1+4t^2}-1}{2t^2}
ight)
ight
ceil.$$

Basic result

Recall that in the general case, we have the Hessian process $\mathbf{H}(\theta)$, given by

$$\mathbf{H}(\theta) := \mathbf{E}[\ell''(Y, X^{\top}\theta)XX^{\top}] = \mathbf{E}[\widetilde{X}(\theta)\widetilde{X}(\theta)^{\top}],$$

where $\widetilde{X}(\theta) := [\ell''(Y, X^{\top}\theta)]^{1/2}X$ is the *curvature-scaled design*.

Theorem 1: Finite-sample excess risk bound for self-concordant losses

Assume that the loss is **SC**, and $\mathbf{G}^{-1/2}\nabla \ell_{\theta}(Y, X^{\top}\theta_{*})$ and $\mathbf{H}(\theta_{*})^{-1/2}\widetilde{X}(\theta_{*})$ are subgaussian. Whenever

$$n \gtrsim d + \log(1/\delta) \vee \frac{d_{\mathsf{eff}}}{d} \log(1/\delta),$$

with probability $1-\delta$ it holds

$$L(\widehat{\theta}_n) - L(\theta_*) \lesssim \|\mathbf{H}^{1/2}(\widehat{\theta}_n - \theta_*)\|^2 \lesssim \frac{d_{\mathsf{eff}} \log(1/\delta)}{n}.$$
 (*)

- \odot Distribution conditions are local (only at θ_*);

Analysis: Key observation

Given $\mathbf{H}(\theta) = \nabla^2 L(\theta)$, consider **Dikin ellipsoids** of $L(\theta)$ at θ_0 :

$$\Theta(\theta_0, r) := \{\theta : \|\mathbf{H}(\theta_0)^{1/2}(\theta - \theta_0)\|^2 \le r^2\}.$$

Key Observation. Suppose that $\mathbf{H}_n(\theta) \approx \mathbf{H}_n(\theta_*)$ w.h.p. for any $\theta \in \Theta(\theta_*, r)$. Then, $\widehat{\theta}_n \in \operatorname{Argmin} L_n(\theta)$ can be localized to $\Theta(\theta_*, r)$ once

$$\|\mathbf{H}(\theta_*)^{-1/2}\nabla L_n(\theta_*)\|^2 \lesssim r^2,$$

Proof sketch:

- Indeed, by definition of $\widehat{\theta}_n$, $L_n(\widehat{\theta}_n) \leq L_n(\theta_*)$. Assume $\widehat{\theta}_n \notin \Theta_n(\theta_*, r)$.
- Pick $\overline{\theta}_n \in [\theta_*, \widehat{\theta}_n]$ on the border of $\Theta_n(\theta_*, r)$. Still, $L_n(\overline{\theta}_n) \leq L_n(\theta_*)$.

$$0 \geq L_n(\overline{\theta}_n) - L_n(\theta_*) \approx \langle \nabla L_n(\theta_*), \overline{\theta}_n - \theta_* \rangle + \underbrace{\|\mathbf{H}_n(\theta_*)^{1/2}(\overline{\theta}_n - \theta_*)\|^2}_{\approx r^2 \text{ (by Theorem T)}}.$$

• By Cauchy-Schwarz, we arrive at $\|\mathbf{H}(\theta_*)^{-1/2}\nabla L_n(\theta_*)\|^2 \gtrsim r^2$.

Contradiction!

Analysis: Recap

- Once $\widehat{\theta}_n$ has been localized to the neighborhood of θ_* where $L_n(\theta)$ is quadratic, we can mimick the argument for linear regression.
- Localization is guaranteed once

$$\|\mathbf{H}(\theta_*)^{-1/2}\nabla L_n(\theta_*)\|^2 \lesssim r^2$$
,

which leads to the second threshold for n:

$$n \gtrsim \frac{1}{r^2} d_{\text{eff}} \log(1/\delta).$$

Now the question is:

What is the radius r of the Dikin ellipsoid in which $\mathbf{H}_n(\theta) \approx \mathbf{H}_n(\theta_*)$?

- **Short answer:** we can afford $r^2 \approx 1/d$ using self-concordance.

Analysis: Self-concordance at play

What is the radius r of the Dikin ellipsoid in which $\mathbf{H}_n(\theta) \approx \mathbf{H}_n(\theta_*)$?

1. Recall that

$$\mathbf{H}_n(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell''(Y_i, X_i^{\top} \boldsymbol{\theta}) X_i X_i.$$

2. Integrating $|\ell'''(y,\eta)| \leq [\ell''(y,\eta)]^{\frac{3}{2}}$ from $\eta_* = X^\top \theta_*$ to $\eta = X^\top \theta_*$

$$\frac{1}{(1+[\ell''(y,\eta_*)]^{\frac{1}{2}}|\eta-\eta_*|)^2} \leq \frac{\ell''(y,\eta)}{\ell''(y,\eta_*)} \leq \frac{1}{(1-[\ell''(y,\eta_*)]^{\frac{1}{2}}|\eta-\eta_*|)^2},$$

$$\frac{1}{(1+|\langle\widetilde{X}(\theta_*), \theta-\theta_*\rangle|)^2} \leq \frac{\ell''(Y, X^\top \theta)}{\ell''(Y, X^\top \theta_*)} \leq \frac{1}{(1-|\langle\widetilde{X}(\theta_*), \theta-\theta_*\rangle|)^2}.$$

3. The ratio is bounded if $|\langle \widetilde{X}(\theta_*), \theta - \theta_* \rangle| \leq c < 1$, i.e., by Cauchy-Schwarz,

$$\underbrace{\|\mathbf{H}(\theta_*)^{-1/2}\widetilde{X}(\theta_*)\|}_{\approx \sqrt{d}} \cdot \underbrace{\|\mathbf{H}(\theta_*)^{1/2}(\theta - \theta_*)\|}_{r} \leq c \ \Rightarrow \boxed{r \gtrsim \frac{1}{\sqrt{d}}}. \ \blacksquare$$

Improved result

Theorem 2: Improved sample complexity for self-concordant losses

Assume the loss is SC, $\mathbf{G}^{-1/2}\nabla \ell_{\theta}(Y, X^{\top}\theta_{*})$ is subgaussian, and $\mathbf{H}(\theta)^{-1/2}\widetilde{X}(\theta)$ is subgaussian in the unit Dikin ellipsoid of $L(\theta)$ at θ_{*} :

$$\Theta(\theta_*, 1) = \{\theta : \|\mathbf{H}(\theta_*)^{1/2}(\theta - \theta_*)\| \le 1\}.$$

Then for (\star) it is sufficient that

$$n \gtrsim d \log(d/\delta) \vee \frac{d_{\text{eff}}}{\log(1/\delta)}$$

Main idea:

- Sample complexity $n \gtrsim d_{\text{eff}} d$ in Theorem 1 is due to Hessian approximation in the small Dikin ellipsoid with $r = O(1/\sqrt{d})$ rather than r = O(1).
- We need to prove that $\mathbf{H}_n(\theta) \approx \mathbf{H}_n(\theta_*)$ for $\theta \in \Theta(\theta_*, 1)$. To do this, we combine self-concordance with a **covering argument**.

Covering the Dikin ellipsoid

- 1. It is rather easy to prove first that $\mathbf{H}(\theta)$ is near-constant on $\Theta(\theta_*, 1)$.
- 2. By **SC**, $\mathbf{H}_n(\theta)$ is near-constant in smaller ellipsoids $\Theta(\theta, 1/\sqrt{d})$.
- 3. Now cover $\Theta(\theta_*,1)$ by $\Theta(\theta,1/\sqrt{d})$ with θ in the epsilon-net $\mathcal{N}_{\varepsilon}$, and control uniform deviations $\mathbf{H}_n(\theta)$ from $\mathbf{H}(\theta)$ on $\mathcal{N}_{\varepsilon}$. OK since $\log |\mathcal{N}_{\varepsilon}| = O(d \log d)$.

Pseudo self-concordant losses

• Because of the "incorrect" power of ℓ'' in **PSC**, we need an extra condition:

$$\mathbf{E}[XX^{\top}] \leq \rho \mathbf{E}[\ell''(Y, X^{\top}\theta_*)XX^{\top}].$$

for some $\rho > 0$. This condition is standard in logistic regression [Bach, 2010].

- We obtain similar results, but with ρ times worse sample complexity.
- Worst-case bounds on ρ can be exponentially bad [Hazan et al., 2014]. However, this is not the case in practice [Bach, 2010].

Conclusion and perspectives

We use **self-concordance** – a concept from optimization – to obtain statistical results – **near-optimal** rates in finite-sample regimes in some statistical models.

Perspectives:

- Regularized estimators.
- Iterative algorithms: stochastic approximation, Quasi-Newton, ...
- Other models: covariance matrix estimation with log det loss, ...

Thank you!

References

- Bach, F. (2010). Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384–414.
- Borovkov, A. A. (1998). *Mathematical statistics*. Gordon and Breach Science Publishers.
- Hazan, E., Koren, T., and Levy, K. Y. (2014). Logistic regression: tight bounds for stochastic and online optimization. In *Conference on Learning Theory*, pages 197–209.
- Hsu, D., Kakade, S. M., and Zhang, T. (2012). Random design analysis of ridge regression. *The Journal of Machine Learning Research*, 23(9):1–24.
- Lehmann, E. L. and Casella, G. (2006). *Theory of point estimation*. Springer Science & Business Media.
- Nesterov, Y. and Nemirovski, A. S. (1994). *Interior-point polynomial algorithms in convex programming*. Society of Industrial and Applied Mathematics.
- van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
- Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. *arXiv:1011.3027*.

Analysis: Recap (full)

• Once $\widehat{\theta}_n$ is in neighborhood of θ_* where $L_n(\theta)$ is quadratic, we're done:

$$L_n(\widehat{\theta}_n) - L_n(\theta_*) \lesssim \|\mathbf{H}_n(\theta_*)^{1/2}(\widehat{\theta}_n - \theta_*)\|^2 \lesssim \|\mathbf{H}_n^{-1/2}(\theta_*)\nabla L_n(\theta_*)\|^2;$$

by Theorem T, as long as $n \ge d + \log(1/\delta)$,

$$\|\mathbf{H}_n^{-1/2}(\theta_*)\nabla L_n(\theta_*)\|^2 \approx \|\mathbf{H}^{-1/2}(\theta_*)\nabla L_n(\theta_*)\|^2 \lesssim \frac{d_{\mathsf{eff}}\log(1/\delta)}{n}.$$

Similarly for $L(\widehat{\theta}_n) - L(\theta_*)$.

• Localization is guaranteed once $\|\mathbf{H}_n^{-1/2}(\theta_*)\nabla L_n(\theta_*)\|^2 \lesssim r^2$, which leads to the second threshold for n:

$$n \gtrsim rac{1}{r^2} d_{\mathsf{eff}} \log(1/\delta).$$

• Now the question is:

What is the radius r of the Dikin ellipsoid in which $\mathbf{H}_n(\theta) \approx \mathbf{H}_n(\theta_*)$?