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Multiclass linear classification

e Dataset (x;,y;), i € [n] ={1,2,...,n}.
o x; € RY features, y; € {ei, ..., &} class — a vertex of simplex Ay.
e Large-scale: d, n, k up to 10® — 10°, as in NLP applications.

Regularized empirical risk minimization (ERM)

min ZE "xi,y) + MUl

UER*k n
Regularization

e Goal: U* € RY** encoding k classifiers (empirical minimizer!)
® Loss /: RF x Ay — R — misfit of predicting the (soft)
label y € Ay from the output of k classifiers U™ x € R.
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Multiclass linear classification

e Dataset (x;,y;), i € [n] ={1,2,...,n}.
o x; € RY features, y; € {ei, ..., &} class — a vertex of simplex Ay.
e Large-scale: d, n, k up to 10® — 10°, as in NLP applications.

Regularized empirical risk minimization (ERM)

min Zf "xi,y) + MUl

UER*k n
Regularization

e Goal: U* € RY** encoding k classifiers (empirical minimizer!)
® Loss /: RF x Ay — R — misfit of predicting the (soft)
label y € Ay from the output of k classifiers U™ x € R.

Goal: find an optimum U* with sublinear iteration cost 5(d +n+ k)J
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Challenge and previous work

Input: X € R™9 Y € AY"; output: U € R% = O(dn + dk + nk).
Biclass case: k = O(1), linear time O(dn), sublinear time O(d + ”)-J

e Dual sampling: sample i € [n], compute V ((u"x;, y;) in O(d).
e SGD, Pegasos [Shalev-Shwartz et al., 2011], SVRG [Johnson and
Zhang, 2013], SAGA [Defazio et al., 2014], SAG [Schmidt et al.,
2017], SDCA [Shalev-Shwartz and Zhang,
2013], Frank-Wolfe [Lacoste-Julien et al., 2012],...
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e Dual sampling: sample i € [n], compute V ((u"x;, y;) in O(d).
e SGD, Pegasos [Shalev-Shwartz et al., 2011], SVRG [Johnson and
Zhang, 2013], SAGA [Defazio et al., 2014], SAG [Schmidt et al.,
2017], SDCA [Shalev-Shwartz and Zhang,
2013], Frank-Wolfe [Lacoste-Julien et al., 2012],...
¢ Saddle-point approach: recast as a quasi-bilinear saddle-point
problem with variables in R and R”", solve by mirror descent or
mirror prox. Partial gradients in O(dn), accelerated to O(d + n).
e [Grigoriadis and Khachiyan, 1995; Juditsky and Nemirovski, 2011;
Xiao et al., 2017],...
e Explicit bounds on sampling variance, certificate on duality gap.
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e Dual sampling: sample i € [n], compute V ((u"x;, y;) in O(d).
e SGD, Pegasos [Shalev-Shwartz et al., 2011], SVRG [Johnson and
Zhang, 2013], SAGA [Defazio et al., 2014], SAG [Schmidt et al.,
2017], SDCA [Shalev-Shwartz and Zhang,
2013], Frank-Wolfe [Lacoste-Julien et al., 2012],...
¢ Saddle-point approach: recast as a quasi-bilinear saddle-point
problem with variables in R and R”", solve by mirror descent or
mirror prox. Partial gradients in O(dn), accelerated to O(d + n).
e [Grigoriadis and Khachiyan, 1995; Juditsky and Nemirovski, 2011;
Xiao et al., 2017],...
e Explicit bounds on sampling variance, certificate on duality gap.

Multiclass case: all those become O(dk) or O(dk + nk), i.e. linear. |
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Reduction to saddle-point problem

We consider the class of Fenchel-Young losses [Blondel et al., 2018]:

HUTx,y) = max { f,(v) +(v—y)TUx }
vEA, ~— ————
concave and ‘“simple” bilinear

® k-softmax loss (logistic):
fy(v) = h(v) = =2 iepn vilog(vi)
® k-hinge loss (SVM) [Shalev-Shwartz and Ben-David, 2014]:

f(v)=1—v'y.
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Reduction to saddle-point problem

We consider the class of Fenchel-Young losses [Blondel et al., 2018]:

HUTx,y) = max { f,(v) +(v—y)TUx }
vEA, ~— ————
concave and ‘“simple” bilinear

® k-softmax loss (logistic):
fy(v) = h(v) = =2 iepn vilog(vi)
® k-hinge loss (SVM) [Shalev-Shwartz and Ben-David, 2014]:
f(v)=1—v'y.

Saddle-Point Formulation

1
. ax —t V-Y)" XU MU F(V
ol s St [V = ¥) T XaUi + M Ulla + (V)
bi-affine simple :% 2ieqn) i (vi), simple

and the dual feasible set V = A?" is the direct product of simplices.
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Mirror descent: primer

min f(U) + VY(U)
ved ~——

cvx, smooth cvx, simple

(Composite) gradient descent: given stepsizes {7}, iterate

1 1 t12
Ut = argmin {(Vf(Ut), U) + v (U) + —u}
veu t 2

Mirror descent: replace ||U — U?||3 with Bregman divergence:
Dg,, (U, U") == ¢u(U) — ¢u(U7) = (Vou(U"), U = UY)

for some potential ¢y(-) generalizing 1| - |3 and such that:
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Mirror descent: primer

min
Ueu

f(U)
—~—

cvx, smooth

+ V(U)
——

cvx, simple

(Composite) gradient descent: given stepsizes {7}, iterate

1 1 t12
Ut = argmin {(Vf(Ut), U) + v (U) + —u}

veu

Tt 2

Mirror descent: replace ||U — U?||3 with Bregman divergence:
Dy, (U, U) := du(U) = du(U*) = (Vou(U"), U = UY)

for some potential ¢y(-) generalizing 1| - |3 and such that:

® ¢y, is 1-strongly convex w.r.t. the given norm || - ||#.
e “Fitting” geometry ), = 5(radiusﬁ,”%(1/{)).
® Step easily computable — usually a quasi-separable problem.
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Mirror descent for saddle-point problems

Given convex sets U and V), consider a saddle-point problem

min max f(u,v) + VY(U) + F(V)
Ueu vey —— —— ~——
smooth, cvx in U, ccv in V cvx, simple ccv, simple

e primal-dual variable: W = (U,V)eW =U xV

e gradient field G(W) = [VUf(U, V), va(U, V)]

® “balanced” joint potential ¢y (W) = ¢y (U) + égbv(V).
Mirror descent
W' = prox,,.(G(W?))

1= argmin {(G(Wt), W) + W (U) — F(V) + M} ’
Wwew Ve
Mirror prox [Nemirovski and Yudin, 1983], faster convergence rate:
Witti/2 — prOXWt(G(Wt)).
Wt+1 _ proxW,(G(WtH/z)).

D. M. Ostrovskii On algorithmic efficiency and statistical optimality in empirical risk minimization 5/31



Mirror descent for saddle-point problems

Given convex sets U and V), consider a saddle-point problem

min max f(U,V) + Y(U) + F(V)
Ueu vey —— ——
smooth, cvx in U, ccv in V cvx, simple ccv, simple

e primal-dual variable: W = (U,V)eW =U xV

o gradient field G(W) — [Vuf(U, V), Vv (U, V)]

* “balanced” joint potential gy (W) = o-du(U) + g5 ov(V).
Mirror descent

W' = prox,,.(G(W?))

= argmin{(G(Wt), W) +v(U) — F(V)+ ~

wew

Dy, (W, Wt)} |

Stochastic mirror descent: replace G(W?") with cheaper
stochastic oracle ((W?") such that E[((W*)] = G(W?*).
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General convergence guarantee

Consider a saddle-point problem with quasi-bilinear objective:

1
f(U,V) = —tr [(V—Y)"XU],
1
G(W) = XT(V — ¥), ~XU]
1
(W) = ;[nv,y; —&u]
Given norms || - ||#., || - ||» and their dual norms || - ||+, || - ||+, define:

® Cross-Lipschitz constant L4 4 of G(-):

1
Loyy:=— sup [XU|

Mulla <1

yrx

® Uniform bounds on “variances” of £, and 1y y over W:

1 _
oy = — sup E[|| XU — &y| ;
n= veu

?,/*], oy 2 ...
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General convergence guarantee

Theorem (see [Juditsky and Nemirovski, 2011])

After T iterations of stochastic mirror descent with appropriate
constant stepsize and uniform averaging, the expected duality gap is

E[Gap”] < ﬁ%,%\/_WuQv i Vi Qu(_T\z]FL N
T T

® Cross-Lipschitz constant Ly 5 of G(-):

1
,C@y/ — — sup ||XU|

Mulla <1

ye-
® Uniform bounds on “variances” of £, and 1y y over W:

- 1 -
oy > —5 sup E[IXU —&ull5-], a7 = -
n= veu
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Choice of geometry

Saddle-Point Formulation

1
min max —tr [(V— Y)TXU}Jr)\HUHy/ + Fy(V)
—_— =

Uel VeV n
simple simple
where U is an || - ||4-ball, and V = A?" is the product of simplices.
Now we have to choose the setup || - ||, || - ||», du(*), ¢v(-) such that

E(g/,y/\/ QL{QV 4/ Qu(}‘% + Qy(_fé,

and both are small (hopefully not growing with d, n, k).
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Choice of geometry: dual

Mixed norms with p, g € [1, o0]:
1/p
IVl = WVila = ( S IVGI)
i€[n]

We would like to choose p, g “compatible” with ¥ = A?". Intuition:

® When n=1, we have ¥ = Ay, and || - [[pxqg = || - |l =
® When k =2, we have 7" = [—1,1]" — cube, and || - |[pxq = || ||p
Correct choice known from [Nemirovski and Yudin, 1983]: | p .

-l =1 llaxa, @w(V) = Z h(V (i, J

where h: Ay — R is Shannon's entropy over rows.

D. M. Ostrovskii
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Choice of geometry: primal

Apart from statistical considerations, we have algorithmic constraints:

® Need p = 1 to control variance when sampling features in the
biclass case [Juditsky and Nemirovski, 2011].

® Need g = 1 to control variance when sampling classes (next).

Entrywise /;-norm: ||U||4 = Z Z | U] J

J€[d] kel

e Convert U = {U: ||U||; < R*} into “solid” simplex in R?9*:

ut

A= (Qerws 1l 0<r)  vew —paer
& U=[U;U] ~_ 7"

Potential: renormalized nonnegative entropy (1-strongly cvx on Z:{\)
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Partial and full sampling

G(U*, V*) = Z[aX T n(V* = V)i, —nXaU].
Computing G(U*, V*) is hard: O(dnk) arithmetic operations (a.o.).
e Sample the rows of Ut and V! — Y, i.e. features and examples:

.
e.e.
Eulp) = XLL-U, where j~pe Ay,

Pj

and similarly for v y(q) with q € A,. Computed in O(dk + nk).
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Partial and full sampling

G(U*, V*) = Z[aX T n(V* = V)i, —nXaU].
Computing G(U*, V*) is hard: O(dnk) arithmetic operations (a.o.).
e Sample the rows of Ut and V! — Y, i.e. features and examples:

e.el

Sulp) = ij—JU, where j ~p € Ay,
J
and similarly for v y(q) with q € A,. Computed in O(dk + nk).
e Further sample classes (conditionally):

eel T [ ~ P,
Eulp, P):XLUG"‘Q"’7 where {J P

i JK

and similarly for nv y(q, Q) with Q € AP".
e Computed in O(d + n + k) a.o. as we only need one row of P, Q.
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Variance control

Ideally, we are interested in solving

inf {sup E[|| XU — &u(p)|

pely,PenP? (ueu

%,*]}, inf  {..}.

q€D,,QEAY"

Lemma. Second moments sup <, E[||€u(p, P)||3+], ... minimized by:
pj o< IXC)ll2 - (UG s, Pj o< [Ujil,

a7 o [|X(7 ) lloo - IV(2) = V() Qi o< [Vie = Vil

Final bound

With this choice of geometry and sampling distributions:

*

R
E[GapT] —

77

For light-tailed data distribution, the two terms are of the same order.

. 5 (maxjeld] E,l,/2[gz§12] +E, [maxje[d] ’¢J|]) 0
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Sublinear algorithm for multiclass SVM

Fully sampled oracle (w = 1[nv,y, —&u] sparse, cost O(d + n + k).
Challenges:

® lterate updates W' = prox,,.(Cw:) dense.

® Maintain distributions p, q that depend on the row norms:

pj o< IXC )2 UG )l a7 o< IX 0 )lloo - 1V ) = Y2 [l

Key idea: Entropy-type potentials + affine composite terms = special
multiplicative updates: each row rescaled (modulo one element).

® Hence our trick with “solid" simplex / renormalized entropy in U.
e Hinge loss has affine dual composite term Fy (V) =1 —tr[VTY].
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Sublinear algorithm for multiclass SVM, cont.

Algorithm sketch:
e |nitialize U° € Apge, VO € A‘ff" by uniform distributions.

e Compute initial sampling distributions p(®, q(® from X.
e Fort=0,1,.... T
1. Sample iz ~ q(f), Ji ~ p(f)y Ky ~ Q(t)(,'t7 ), K~ P(f)(jt‘7 ).

2. Compute Cwr = [nyey, —€ye] (two columns k¢ and K}).
3. Lazy updates: update scaling factors for the rows of U and V.

4. Update UG, )1, IV (it,:) = Y (i, ) ||l1 and thus p() and q(1).
5. Explicitly update the sampled element U(j¢, k¢), V(it, K}).

Behind the scenes: lazy averaging of iterates in O(d + n + k) per
iteration + O(dk + nk) postprocessing.

® Sublinear iterations O(d + n + k).

® Linear pre/postprocessing and memory: O(dn + nk + dk).

® O(dk) can be improved to O(d min(k, T)).
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Experiments and perspectives

6
.‘ FU”»SMD, Gap 10 7" O LLEL LR L I
5 -@-Full-SMD, Acc. 05
4-SSM, Acc. 1077 PO /e,
— 4 ""MP, Gap oo
23 —MP, Acc. 1
g -@ Full-SMD, Gap
= 10705 f-@Full-SMD, Acc.
2 A -4-SSM, Acc.
1 SR 107 == MP, Gap
................ —MP, Acc.
0 100 200 300 400 500 10 102 10°
Runtime (sec) Runtime (sec)

Convergence of sublinear stochastic mirror descent (Full-SMD) vs.
mirror prox (MP) and SGD, in natural (left) and logarithmic scale (right).

Perspectives:

(?) Faster (at least linear!) certificate for the duality gap.

(?) Logistic and other Fenchel-Young losses.

(?) Heavy-tailed data via Hadamard /DFT randomization technique.
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Part II: Fast Rates for M-Estimators using Self-Concordance ]

D. M. Ostrovskii, F. Bach. Finite-Sample Analysis of M-Estimators
using Self-Concordance. arXiv:1810.06838.

NOT IN THIS TALK:

U. Marteau-Ferey, D. M. Ostrovskii, A. Rudi, F. Bach.
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk
Minimization through Self-Concordance. arXiv:1902.03046.




Problem setup

Statistical learning problem

Given some loss £ : R x ) — R, find a minimizer 6, € R? of expected risk:

0, € Argmin L() := E[((x "0, y)],
0cR?

where expectation E[-] is w.r.t. the unknown distribution P of (x,y) € R x ).
Since P is unknown, 0, can't be found; instead, it is estimated from i.i.d. sample:

(x1,%1); s (Xn, Yn) ~ P (iind.)

® Random-design classification, )V = {0, 1}, and regression, ) = R.

* Performance of a candidate § measured by excess risk L(0) — L(6,).
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Goal

® Empirical risk minimization: replace L(#) with empirical risk:

b, € Argmin 0x"0,yi) v
R { Z l
Also called M-estimation in statistics.
® Special case: conditional quasi maximum likelihood estimator (qMLE):

U(n,y) = —log py(y)

for some parametric family {p,(y),n € R}, possibly not including the true
distribution P

Extend the classical asymptotic theory to finite-sample setup. \
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Motivation 1: Classical asymptotic theory*

e Local regularity assumptions: L(#) sufficiently smooth at 6., and
H:= V2L(6,) > 0.
o Gradient covariance G := E[Vpl(x 0., y) Vol(x0,,y)"], and let
M :=H Y2GH /2.
desr := tr(M) is the effective dimension. In well-specified models:
G=H = M=1l; = dg=d.
e In the limit n — oo, Central Limit Theorem & Taylor Expansion give:
ViIHY2(8, — 0,) ~ N(0, M),
nl[HY2(@, - 0.)[2 ~ N0, M), 2n(L(B,) - L(6.)) ~ N (0, M)>.

{1@) - 1(6.), IH2(6, — 0.)]2} = O (M) .

*[Borovkov, 1998; van der Vaart, 1998; Lehmann and Casella, 2006].
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Motivation 2: Random-design linear regression, |

® Gaussian model y = N(x'8,02) leads to quadratic loss and risk:
Ux"0,y) = 503 (y — x"0)?,
L(0) — L(6.) = 3IIH2(0 — 0.)]%,
La(0) — La(0.) = LIH,Y2(0 — 0.)[ + (VLa(6.). 0 — 6.)

® In particular, at any 6 we have V2L(0) = H and V2L,(#) = H, with
H=E[x'], H,= %Zle xix;! .
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Motivation 2: Random-design linear regression, |

® Gaussian model y = N(x'8,02) leads to quadratic loss and risk:
Ux"0,y) = 552(y — x"0)?,
L(0) — L(6.) = 3IIH2(0 — 0.)]%,
La(8) = La(6:) = 5IHY2(8 — 6.)I* + (VLa(6.),6 — 6.)

zero-mean
® In particular, at any 6 we have V2L(0) = H and V2L,(#) = H, with
H=E[x'], H,=21Y" xx'.

Theorem T: Estimation of a sample covariance matrix [Vershynin, 2010]

Assume H~1/2X is subgaussian, i.e., has tails lighter than N (i, l4), and
n 2 d+log(1/0).
Then, with probability at least 1 — ¢ it holds:

0.5H < H, < 2H.
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Motivation 2: Random-design linear regression, |l

Theorem 0: Finite-sample risk bound for linear regression [Hsu et al., 2012]

Assume that H=1/2x and G=Y/2V{y(x " 0., y) are subgaussian, and
n 2z d+log(1/9).

Then w.p. at least > 1 — ),

0. ) dest log(1
L(En) — L(8.) S W20, — 0.)|P < [H2VL,(6.) P < %8/,
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Motivation 2: Random-design linear regression, |l

Theorem 0: Finite-sample risk bound for linear regression [Hsu et al., 2012]

Assume that H=1/2x and G=Y/2V{y(x " 0., y) are subgaussian, and
o2 i L)

Then w.p. at least > 1 — ),

L(En) — L(8.) S W20, — 0.)|P < [H2VL,(6.) P < %8/,

Proof sketch:
1. Since VL,(6,) = 0, we have |[HF (0, — 6,)12 = |[Hn Y*V Ly(6.)]2.
2. Combining with Theorem T,

L(Ba) — L(6.) = 3HY2(8, — 0.)]% < 2[H" Y2V L, (0.)]%

3. The score H™Y/2VL,(6,) is the average of n i.i.d. subgaussian vectors.
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Towards the general case

® Generally, risk is not quadratic, and Hessians are not constant:
V2L(0) = H(0), V?L,(0) =H,(0).
® To extend the previous argument, we must control the precision of local

quadratic approximation of L,(#) and L(6) around 6..

® We exploit self-concordance, a concept introduced in [Nesterov and
Nemirovski, 1994] in the theory of interior-point methods, and brought to
the statistical learning context in [Bach, 2010] to study logistic regression.

D. M. Ostrovskii On algorithmic efficiency and statistical optimality in empirical risk minimization 20 / 31



Self-concordant losses

We always assume that £(n, y) is convex in 7.

Definition. ¢(n, y) is self-concordant (SC) if for any (n,y) € R x Y it holds

1€ (n,y)| < [0 (n, y)I*2.
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Self-concordant losses

We always assume that £(n, y) is convex in 7.

Definition. ¢(n, y) is self-concordant (SC) if for any (n,y) € R x Y it holds

1€ (n,y)| < [0 (n, y)I*2.

® While the above definition is homogeneous in 7, the next one is not:

Definition. 4(n, y) is pseudo self-concordant (PSC) if instead it holds

16 (n, )| < £r(n,y).

® PSC losses are somewhat more common than SC ones.

® However, obtaining optimal rate for PSC losses requires larger sample size.
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Example 1: Generalized linear models

Conditional negative log-likelihood of y given 7 = x 6 in the form

U(n,y) = —yn+a(n) — b(y),

where a(n) is called the cumulant, and is given by
a(n) = Iog/ e hdy .
y

This defines the density p,(y) o e7720) such that a(n) = E,, [y].
PSC: Logistic regression since () = {0,1}), and

|a" ()] = [Ep, (v — Ep, V)’ < Ep, [y — Ep, [¥])*] = " ().

PSC: Poisson regression: Y ~ Poisson(e”), then a(n) = exp(n).

SC: Exponential-response model: Y ~ Exp(n), n > 0, a(n) = — log(n).
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Example 2: Robust estimation

Loss ¢(y,n) = ¢(y — n) with ¢(t) convex, even, 1-Lipschitz, and ¢”(0) = 1.

2.5
= Huber loss
® Huber loss 20 — log(cosh(y —m) |}
15 — Vity-n?-1
( ) t2/2, |t| < ]_7 g — Self-concordant
plt) = ~ 10
Tt—1/2, [t] > 1.
0.5
¢’ (t) discontinuous at +1. oo
=3 2 -1 0 1 2 3

y—=n

PSC: Pseudo-Huber losses: ¢(t) = logcosh(t), ¢(t) = v1+t2—1.
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Example 2: Robust estimation

Loss ¢(y,n) = ¢(y — n) with ¢(t) convex, even, 1-Lipschitz, and ¢”(0) = 1.

25
= Huber loss
® Huber loss 20 — log(cosh(y —m) |}
) 15 — Vi+y-n?-1
( ) t /2, |t| < ]_7 g — Self-concordant
o(t) = ~ 10
Tt—1/2, [t] > 1.
0.5
¢’ (t) discontinuous at +1. oo
3 =2 -1 0 1 2 3
y—n

PSC: Pseudo-Huber losses: ¢(t) = logcosh(t), ¢(t) = v1+t2—1.
SC: Fenchel dual of the log-barrier ¢(u) = —log(1 — u?)/2 on [-1,1]:

VIifar -1
V1442 —1+log (Hﬂ

1
t) ==
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Basic result

Recall that in the general case, we have the Hessian process H(6), given by
H(9) := E[¢("(x"6,y)xx "] = E[x(0)X(9) ],

where X(0) := [¢"(x "0, y)]/?x is the curvature-scaled design.

D. M. Ostrovskii On algorithmic efficiency and statistical optimality in empirical risk minimization 24 / 31



Basic result

Recall that in the general case, we have the Hessian process H(6), given by
H(9) := E[¢("(x"0,y)xx"] = E[x(6)X(0) '],

where X(0) := [¢"(x "0, y)]/?x is the curvature-scaled design.

Theorem 1: Finite-sample excess risk bound for self-concordant losses

Assume that the loss is SC, and G~1/2V/(x " 0., y) and H(0.)~/?x(60.)
are subgaussian. Whenever

n > d +log(1/3) V dus d log(1/5),

with probability 1 — 4 it holds

L) — 1(0.) S IHY2(0, — 0.)|P S W29 L,(0.) P 5 % oBE0)

© Distribution conditions are local (only at 6..);
© Large sample complexity — scaling as the product O(dess d).
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Analysis: Key observation

Given H(6) = V2L(6), consider Dikin ellipsoids of L(6) at 6q:
O (6o, r) := {0 : [|H(60)/2(0 — 60| < r*}.

Key Observation. Suppose that H,(0) < H,(0.) w.h.p. for any 6 € © (6., r).
Then, 6, € Argmin L,(0) belongs to © (., r) once

IH(0.) 2V La(6,)]% < 1,

Proof sketch:
® Indeed, by definition of 8y, L,(6,) < L(6.). Assume 8, ¢ ©,(0,,r).

® Pick 8, € [0,,0,] on the border of ©,(6,,r). Still, L(8,) < La(6.).

0> Lo(Ba) — La(0) = (VLa(6.), 80 — 0.) + [IHA(0.)2(F, — 0.)].

~r2 (by Theorem T)

® By Cauchy-Schwarz, we arrive at ||H(0.)~ Y2V L,(6.)|* = r?.

Contradiction!
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Analysis: recap

e Once B, has been localized to the neighborhood of 6, where L,(6) is
quadratic, we can mimick the argument for linear regression.

® | ocalization is guaranteed once
IH(8.) "2V La(6.)]” < 2,
which leads to the second threshold for n:
1
n Z ﬁ eff|0g(1/5).

® Now the question is:

What is the radius r of the Dikin ellipsoid in which H,(0) =~ H,(0.)? J

- Short answer: we can afford r? ~ 1/d using self-concordance.
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Analysis: self-concordance at play

What is the radius r of the Dikin ellipsoid in which H,(0) ~ H,(6.)? J

1. Recall that
1 n
H,(0) = =Y 0"(x"0, y)xix.
()= 5 2T 0 )x

2. Integrating [¢”'(n,y)| < [¢"(n,y)]? from 1, = x" 0, ton =x"6,

1 "(n,y) 1
! = 00y) : |
(L4 [0 (e, )21 — n])? © (1= [, Y)I211 — n])?
revas
1 < '(x"0,y) < 1

(T4 [(x(6+), 0 = 0.))> = £7(xTbu,y) = (L= [(x(0-),0 — 0.)])>
3. The ratio is bounded when |(x(0.),0 — 0.)| < 1/2, i.e., by Cauchy-Schwarz,

IH(0.)2%(6.) ] - |[H(6.)%(0 = 0.)| < 1/2 = |r S
~Vd r

Sl
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Improved result

Theorem 2: Improved sample complexity for self-concordant losses

Assume the loss is SC, G™/2V{y(x " 0., y) is subgaussian, and H(#)~/?x(0)
is subgaussian in the unit Dikin ellipsoid of L() at 6,:

©(6.,1) = {6 : [[H(6.)"/%(6 — .)]l < 1}.

Then, the asymptotic bound holds already when

n 2 dlog(d/6) V deilog(1/9),

Main idea:

® Sample complexity n 2 desrd in Theorem 1 is due to Hessian approximation
in the small Dikin ellipsoid with r = O(1/+/d) rather than r = O(1).

® We need to prove that H,(0) < H,(0,) for § € ©(0.,1). To do this, we
combine self-concordance with a covering argument.
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Covering the Dikin ellipsoid

R— e N

1. It is rather easy to prove first that H(#) < H(6.) on ©(0.,1).
2. By SC, H,(6) =< H,(6) in a small ellipsoid ©(fy,1/+/d).

3. Now cover ©(f.,1) by ©(o,1/v/d) with 6y in the epsilon-net Az. Control
uniform deviations H,(#) from H(#) on N.. Note: log|N:| = O(dlogd).
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Pseudo self-concordant losses

® Because of the “incorrect” power of ¢ in PSC, we need an extra condition:
E[xx"] < pE[¢" (x" 0., y)xx].
for some p > 0. This condition is standard in logistic regression [Bach, 2010].
® \We obtain similar results, but with p times worse sample complexity.

® Worst-case bounds on p can be exponentially bad [Hazan et al., 2014].

® However, this is not the case in practice. E.g., we show that
3/2
p S 0¥

in logistic regression with Gaussian design x ~ A/(0, X).
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Conclusion and perspectives

We use self-concordance — a concept from optimization — to obtain statistical
results — near-optimal rates in finite-sample regimes in some statistical models.

Behind the scenes: regularized estimators ( ¢, and ¢;-regularization).

Perspectives:
® Heavy-tailed distributions
® |terative algorithms: stochastic approximation, Quasi-Newton, ...

® QOther models: covariance matrix estimation with log det loss, ...

Thank youl!
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Part Ill. Covariance Estimation for Heavy-Tailed DistributionsJ

Joint work with Alessandro Rudi

D. M. Ostrovskii, A. Rudi. Affine-Invariant Covariance Estimation for
Heavy-Tailed Distributions. arXiv:1902.03086.



Covariance Estimation Problem

Estimate the covariance matrix S = E[XX "] from
i.i.d. copies Xi,..., X, of X € RY.

® Sample covariance estimator:

~ 1<
S=-)% XX'.

® Relative spectral-norm guarantee: when X is light-tailed,

S log(d /o
u < M with probability > 1 —9,
S]] n
where r(S) = t‘r‘(ssﬂ) is effective rank (Lounici & Kolchinskii 2014).
® Due to affine equivariance, this gives the guarantee

(1 - /dlogr(7d/5)> S5 < <1+ dlog,(7d/5)> S
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Heavy-Tailed Distributions

IS—SIl . [x(S)log(d/5)
Isi =~ n

(1_ /a/loglgar/5)>Sﬁgﬁs(1+ dlog,(7d/5)>.

® The second guarantee is more useful in some applications
(random-design linear regression, noisy PCA).

® Both require light-tailed assumptions on X, i.e. S is not robust.

e Minsker (2014) proposes an estimator with a spectral-norm
guarantee for heavy-tailed distributions (4th moment):

~ 1 <&
gMin _ - > XXX
i=1
where 7(x) is the truncation map. Breaks affine equivariance!
D. M. Ostrovskii
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e Minsker (2014) proposes an estimator with a spectral-norm
guarantee for heavy-tailed distributions (4th moment):

. 1 &
sMin — = XXX
27X
where 7(x) is the truncation map.
® |n fact, the desired < guarantee would hold for
1

n

> r(lIsTEXiIN XX,

i=1

§*
but it is unavailable, as S™1/2X;'s are not observed.
Start with §0 — §Mi", and imitate S* iteratively:

~ i ~_
Sea 7 2 m(lISe XXX
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Actual Estimator

< R N
s = £ 3018 XX,

® Separate the sample Xy, ..., X, into batches, and use the new

batch to compute S;,;.

o Iterative regularization: replace S; /% with (S; + A.1)~Y/2,

where A\, = 27F||S||. Convergence in
O(log(cond(S))) iterations,

where cond(S) is the condition number of S.

® Similar complexity as for the sample covariance estimator!
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Applications

® Noisy PCA: convergence of the noisy power method depends on
the eigenvalue ratios which are controlled by the < guarantee.

¢ Random-design linear regression: we achieve optimal
convergence rates in the setting with heavy-tailed design.

39 /31
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Convergence: deterministic term

Recall that Q;; = O(R*?) and Q) = O(n).

Lemma.

1
Lyy=— o TN [ X I,
J€ld]

where X € R" is the histogram of the j-th feature.

Corollary. Deterministic mirror descent converges with the rate

~ * 1|2 ~
Loyviuly 5 R JIXlEY _ O( R ax E1/2[¢2]>
VT VT e V' n VT jeld]

where E,l,/z[gbf] is the empirical 2nd moment of the j-th feature.

* When n — 0o, maxjeq Ex/*[¢7] — maxje(q EY?[¢2] by LLN.
e \We have equivalence in finite- sample when data is Ilght -tailed.
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Variance control (full)

Ideally, we are interested in solving

inf {sup E[|XU — £u(p)|
vueu

pEA,PEAP?

2,/]} , inf {..}
qeln,QeA]
Lemma. Second moments sup ., E[||€u(p, P)|
pj o< [IXC )Mz - UG, )l Pl o [Ujsl,
q; o< [[X (5, Moo - IV(52) = Y (i) Qi o< [Vie = Vial-
Moreover, the corresponding variance proxies satisfy:

o K ARLY, ,, 0% < 8nLY, , + 8E2 [maxje( |¢)]

2.], ... minimized by:

Final bound

*

T

For light-tailed data distribution, the two terms are of the same order.

:'|

E[Gap’] =

.0 (maxje[d] Erl,/z[tbf] + E,, [max;e[q) !CbJH) :

D. M. Ostrovskii On algorithmic efficiency and statistical optimality in empirical risk minimization 41 / 31



Example 1: Generalized linear models (full)

Conditional negative log-likelihood of y given n = x '@ in the form

(n,y) = —yn+a(n) - bly),
where a(n) is called the cumulant, and is given by

a(n) = Iog/ e/mtb)dy .
Yy
This defines the density p,(y) oc €772%) such that a(n) = E,, [y], and

((n.y) =) =, [(y — Eny)], s>2.
SC/PSC relate 2nd and 3rd central moments of p,(-).
PSC.: Logistic regression since () = {0,1}), and

" (n)| = [Ep, (v — B, )’ < B, [(y — Ep, IY])*] = a"().

PSC: Poisson regression: Y ~ Poisson(e"), then a(n) = exp(n).
SC: Exponential-response
model: Y ~ Exp(n), n > 0, a(n) = — log(n).
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