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In the past few years, I have been active in the areas of statistical learning (broadly construed)
and optimization theory. More specifically, my work tends to proceed in two following directions:

(a) statistical inference methods with sharp guarantees and efficient implementation;

(b) efficient algorithms for solving large-scale optimization and min-max problems.

Statistical theory Optimization theory

Algorithmically efficient  
inference methods

Analysis under uncertainty

When working in both these directions, I aspire to understand the fundamental limits of
how well certain statistical or optimization problem can be solved given limited information. For
example, in statistical inference one might be interested in finding a sample-based prediction
model with the best excess risk over the population distribution [60], or testing a hypothesis
about the unknown distribution of the data [32] as effiently as possible in terms of the required
sample size to reach a sound conclusion. In optimization, one might want to approximate an
exact solution (an optimal solution in a minimization problem, or a saddle-point in a min-max
problem) as fast as possible in terms of the number of search points queried [47]. Establishing
such theoretical guarantees usually requires to pass to classes of problems in which the specific
features of a particular problem instance are abstracted out, yet the class is narrow enough to
be mathematically interesting. While such an approach might seem restrictive to a practitioner,
there is a deep practical motivation behind it: one focuses on the crucial properties of a particular
class of problems, and this leads to procedures which can be broadly applied to a whole variety
of problems. Of course, a procedure which is optimal or near-optimal from the theoretical
viewpoint might have a very modest performance in specific problems one encounters in practice.
As I am interested in the practical implications of my results, I try to avoid such outcomes by
testing my theoretical predictions in numerical experiments. I should also mention that I find
inspiration in exploring the connections between (a) and (b). For example, optimal statistical
procedures often turn out to be given by iterative algorithms. On the other hand, analysis of
stochastic algorithms often relies on advanced statistical tools and sharp results.

Another recurrent theme in my work is construction of adaptive statistical inference
procedures. Oftentimes, it is relatively easy to construct a near-optimal estimator or test
assuming the knowledge of certain structural parameter of the problem. Such parameter can
be rather simple (e.g., the magnitude of the noise or cardinality of the ground-truth signal), or
incapsulate the problem structure (say, it can be a linear subspace to which the signal belongs).
After constructing such an “oracle” procedure, one might want to generalize it to the case
where such a parameter or structure is unknown, ideally, preserving its favorable statistical
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properties. Usually, this is done by minimizing a certain data-based “complexity” criterion
over the family of candidate procedures corresponding to the possible values of the unknown
parameter. The guarantees come in the form of oracle inequalities that characterize the price
of adaptation by relating the statistical performance of the selected procedure to that of the
unavailable “oracle” procedure. The task of constructing adaptive estimators becomes especially
interesting in the case of multi-dimensional structural parameters, where classical approaches do
not lead to satisfactory results.

Yet another interest of mine is robustness of statistical inference procedures. This could
be robustness to model misspecification, where one aims to find out how the performance of a
statistical procedure degrades when the model assumptions under which it is derived are violated.
In a narrower sense, one may seek to construct estimators that are robust against “heavy-tailed”
observations, i.e., perform well under weak assumptions about the data-generating distribution.

In what follows, I shall discuss the directions of my work in more detail. For reader’s
convenience, they are grouped into the two “streams” corresponding to optimization theory and
mathematical statistics; as discussed previously, this division is rather speculative in most cases.

1 Mathematical statistics and learning theory

1.1 Fast learning rates with self-concordant losses

In [52], I have investigated the connection of self-concordance with the availability of fast rates
for the excess risk of the corresponding M -estimator. Self-concordance was introduced by [48] in
the context of interior-point algorithms; in a nutshell, a convex and smooth loss function is called
self-concordant if its third derivative is upper-bounded in terms of the second. I demonstrated
that self-concordance and its extension introduced in [4] in the context of logistic regression, is
instrumental in quantifying the generalization properties of the associated M -estimators with
random design, and allows to obtain fast rates. Essentially, it allows to “sew together” the local
quadratic approximations of the risk, resulting in similar generalization results as in the case of
random-design linear regression. It is remarkable that the obtained results only require local
assumptions about the distribution tails at the target parameter value, similarly to the classical
asymptotic theory. In the work [41], these results have been extended to the nonparametric
scenario. The ideas and techniques introduced in these works have already proliferated in the
community of statistical theorists, leading to some further progress; see, for example, [44, 27, 35].

1.2 Robust estimation

Theory of robust statistical estimation and prediction has experienced a renaissance in the past ten
years, ignited by the seminal works of Catoni and Audibert on robust least-squares [2] and mean
estimation [11]; this has been followed by efficiently implementable truncation-based methods
with sharper—but still suboptimal—statistical guarantees ([66, 56]) and by statistically optimal
methods but extremely computationally-heavy methods based on the “tournament” technique
of Lugosi and Mendelson ([39, 38, 37]). Yet, marrying robustness with tractability remains
challenging: in fact, computationally efficient estimators with subgaussian confidence bounds
under weak moment assumptions are only known for the basic problem of mean estimation [13].

Efficient and tractable robust covariance estimation. One specific task I am interested
in the context of tractable robust estimation is that of obtaining a tractable and robust covariance
matrix estimator under weak moment assumptions, namely the L4 − L2 moment equivalence
condition [43]. This question has remained open for a few years now, after the progress obtained
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by S. Hopkins and coauthors in the context of mean estimation. In fact, there are some reasons
to believe that such an estimator does not exist, but actually proving such a negative result would
require a combination of tools from robust statistics and computational complexity theory; as a
result, this challenging problem has remained beyond the reach of either of the two communities.

Affine-equivariant robust covariance estimation. One property of a statistical estimator,
desired in many applications, is affine equivariance: the estimator should preserve its functional
form under affine reparametrizations of the data-generating distribution. For covariance estima-
tion, this reduces to requiring that an estimate Σ̂ of Σ, the population covariance matrix, satisfies
the positive-semidefinite inequality (1− ε)Σ 4 Σ̂ 4 (1 + ε)Σ for some ε ∈ (0, 1), where A 4 B
means that B−A is positive-semidefinite. For the covariance estimators with proven performance
guarantees, such as [66] or [43], such guarantees are not available due to their non-linearity in
observations. In [56], I have proposed a nearly affine-equivariant covariance estimator with strong
statistical guarantees under L4−L2 moment equivalence, and essentially the same computational
cost as the sample covariance matrix. Interestingly, [42] proposes an alternative construction,
leading to a sharp statistical guarantee, but at the price of losing the algorithmic tractability.

1.3 Model discrimination and two-sample testing

Consider the following setup: one is given a parameter value θ∗ ∈ Rd and two i.i.d. samples Z(0) =

(Z
(0)
1 , ..., Z

(0)
n ) and Z(1) = (Z

(1)
1 , ..., Z

(1)
n ) one of which—and only one—is known to come from Pθ∗ ,

while the other one comes from some unknown distribution Pθ̄. One is then asked the question:

What is the sample complexity of recognizing the “right” sample (corresponding to Pθ∗)?

Assuming that Pθ∗ and Pθ̄ belong to the same parametric family of distributions, we obtain a
parametric version of this problem; the sample complexity should then be expected to depend
on d—the parameter dimension, and ∆—a measure of separation between the two distributions.

This problem was introduced and studied in my joint work [55] with Mohamed Ndaoud
(ESSEC). Our motivation came from applications: as it turns out, certain problems in statistical
privacy and fairness can be reduced to solving such a hypothesis testing problem. For example,
one can consider the task of determining which of the two (large) datasets a given statistical
model was trained with, without explicit knowledge of the datasets. In this case, Z(0) and Z(1)

are the (small) subsamples of the full datasets, and θ∗ corresponds to the statistical model in
question. In the case of random-design linear regression model, we have managed to resolve the
problem, constructing a testing procedure with a worst-case near-optimal sample complexity.
Similarly, we obtained sharp results for general parametric models in the appropriate asymptotic
regime (with ∆→ 0 as n→∞) and for generalized linear models with a small sample size. Our
next step is to revisit the classical—and closely related—problem of two-sample testing, where
the statistician is asked to understand whether two samples have the same distribution or not.

1.4 Structure-adaptive estimation

Consider estimation of a real- or complex-valued discrete-time signal x := (xτ ), −n ≤ τ ≤ n,
from noisy observations y := (yτ ) given by yτ = xτ + σξτ , where the noise variables ξτ are
i.i.d. standard Gaussian. More precisely, the goal can be to recover x on the integer points
of the whole domain [−n, n], a sub-domain, or in a single point. The classical approach is to
assume that x belongs to a known set X with simple structure (e.g., an `p-ball). In such cases,
estimators with near-optimal statistical performance can be obtained explicitly, and turned
out to be linear in observations. Instead, my research has been focused on certain families of
non-linear estimators with larger applicability and strong theoretical guarantees, applicable
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when the signal structure is unknown to the statistician. More precisely, such estimators usually
take the form of the convolution of y with a time-invariant filter that itself depends on y, and is
is obtained as an optimal solution to some convex optimization problem.

In [24, 57, 51], I have explored the statistical properties of adaptive convolution-type es-
timators, obtaining finite-sample high-probability oracle inequalities for the `p-norm error of
such estimators, and proving tight lower bounds. In [50], I focused on efficient algorithmic
implementation of adaptive convolution-type estimators. I devised first-order proximal algo-
rithms adapted to the special structure of the associated optimization problems. I am now
investigating the natural extension of the structure-adaptive estimation problem to the case of
indirect observations, where the signal is fed through a linear time-invariant filter before being
corrupted with the noise. Potentially, this work might lead to some progress in the classical
problem of identification of a linear dynamical system from its noisy output; see, e.g., [9, 25].

2 Optimization theory

2.1 Tractable methods for online optimization

In a nutshell, online optimization is a framework for sequential and adversarial decision-making,
formalized as a game played between the learner and her adversary. Learner makes a sequence of
decisions over T rounds, formalized as a sequence x1, x2, ... of elements from a certain set X ⊆ Rd.
In each round t ∈ {1, ..., T}, the decision xt made by learner is revealed to the adversary, who
then selects the next instantaneous loss `t(·) : X → R from a certain functional class F . The
learner suffers the loss `t(xt), but observes `t(·) as a whole, and uses the information accumulated
so far to make a selection xt+1 in the next round. Her strategy of generating x1, ..., xT is
evaluated against the best decision in hindsight: in other words, her goal is to have a small regret

RT (x1, ..., xT ) :=
T∑
t=1

`t(xt) − min
x∈X

T∑
t=1

`t(x).

Here, the class of losses F is known to the learner, and the choice of F and X specifies a
particular online optimization problem. If the set X and all functions in F are convex, one is
dealing with online convex optimization (OCO). On the other hand, the strategy employed by
the learner in order to make the decisions is known to the adversary, and specific strategies
correspond to correspond to online optimization algorithms.

One direction of my recent work concerns a very natural online optimization setup called
online portfolio selection, where X is the standard d-simplex, and F is comprised of all functions
of the form − log(x>p) parametrized by p ∈ Rd+, a vector with nonnegative entries. This
models periodic investment: in each round, the learner—or trader—invests her current capital by
selecting a distribution xt of her capital over d assets, after which the adversary—“the invisible
hand”—selects a vector pt of asset prices in this trading round. Then x>t pt = exp(−`t(xt)) is the
return on trader’s investment, minimizing the regret corresponds to maximizing the “compound
return”

∏T
t=1 x

>
t pt after T investment rounds. In his seminal work [15], T. Cover simultaneously

proposed this model and an algorithm, termed “Universal Portfolios,” with an O(d log T ) regret.
Later on, this regret guarantee was shown to be optimal [12]. Unfortunately, Cover’s algorithm
is challenging from the computational standpoint: it involves computing certain d-dimensional
integral, and in a practical implementation this integral has to be approximated. In the early
2000s, Kalai and Venpala [30] proposed an implementation of Universal Portfolios based on a
customly-tailored Monte-Carlo sampling scheme; their implementation ran in O(d4(d+ T )14)
per round, essentially remaining prohibitive in any application scenario. On the other hand, a
plethora of computationally feasible methods for online portfolio selection has been proposed
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over the next two decades, but none of them could match the optimal regret of Cover’s algorithm.
Devising a truly practical alternative to Universal Portfolios is a long-standing open problem.

In my recent work [29], the above challenge has finally been addressed. Namely, I have
proposed an algorithm with near-optimal regret— the same as for Universal portfolios up to a
constant factor—and the runtime of only O(d2(T + d)). In a nutshell, the algorithm reduces to
minimizing the observed cumulative loss—the strategy known as follow-the-leader—regularized
by the so-called volumetric barrier for the polytope specified by the vectors {p1, ..., pt} of asset
returns. In fact, this strategy arises as a natural variational approximation of the Universal
Portfolios. It is in my future plans to expand this work in several directions, as discussed next.

Online portfolio selection with nearly constant runtime. In practical applications, it
is preferable to have a procedure whose per-round runtime does not grow with the number of
rounds, i.e. it should depend only on d but not on T . In fact, one may argue—heuristically—that
the runtime for any procedure with near-optimal regret cannot be smaller than O(d3). Meanwhile,
for the algorithm we have proposed in [29], the runtime is larger in the regime T � d. Finding a
procedure that would attain the optimal runtime and regret, simultaneously, remains challenging.

Improved algorithms for quantum state estimation. Quantum state estimation is a
fundamental problem at the intersection of information theory and quantum computing [1]. The
goal is to build a reliable estimate of the state of a quantum system from linear measurements.
Naturally, such a state can be described by a positive-semidefinite matrix with unit trace, and
maximum likelihood estimation falls into the setting of online optimization with X being the
set of all such matrices, and F consisting of functions of the form − log tr

(
X>P

)
where P is

a positive-semidefinite “observation matrix.” Thus, quantum state estimation can be viewed
as a natural “matrix generalization” of the online portfolio selection problem, and very similar
mathematical tools can be applied to address it; this has recently been exploited in [67] to obtain
tractable quantum-state estimation methods with improved performance. However, similarly to
the case of online portfolio estimation, it is still unclear how far one can go in terms of reducing
the computational burden of a near-optimal method. There are strong reasons to believe that
adaptation of our approach in [29] will lead to a substantial progress in answering this question.

Tractable approximations of Online Mirror Descent in the space of measures. In a
nutshell, Cover’s Universal Portfolios algorithm is an instantiation of the general Online Mirror
Descent (OMD) scheme [26] to the problem at hand, in a situation where this scheme turns out
to be computationally burdensome because the search is performed over an infinite-dimensional
space of probability measures. Similar situations arise elsewhere, notably in the context of
computational Bayesian inference [16] and continuous Langevin dynamics [14]. Meanwhile,
volumetric-barrier regularization can be understood in this more general context, as a generic
method to get a computationally cheap approximation of OMD with a similar quality, via its
variational formulation. Naturally, adapting this technique to other scenarios where Mirror
Descent is computationally challenging is a promising direction of my future research endeavors.

2.2 Min-max optimization and saddle-point problems

In the past couple of years, I spent a significant amount of time working on min-max optimization
problems beyond the classical convex-concave setup, with a particular focus on the tractability
of first-order stationary points. Such problems are of the form

min
x∈X

max
y∈Y

f(x, y)
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where the sets X,Y are convex; the objective f is smooth in both variables, nonconvex in x, and
may or may not be concave in y. Such problems arise in many applications in modern machine
learning, e.g., in adversarially-robust statistical learning [40], fair inference [5], generalized
adversarial networks [23], and reinforcement learning [17]. The class of nonconvex-concave
min-max problems are interesting from the theoretical viewpoint, as they highlight the challenges
of studying the general nonconvex-nonconcave setup and give some insight for it. Moreover,
nonconvex-concave objectives arise naturally as the maxima over parametrized families of
(smooth) nonconvex functions, and thus are of independent interest. Finally, some of my work
has been concerned with the classical convex-concave saddle-point problems; here, I have adapted
some known optimization methods to construct efficient estimation and prediction procedures.

First-order stationarity in nonconvex-concave problems. In [54], I proposed a sim-
ple and intuitive algorithm with state-of-the-art performance guarantees for the task of find-
ing approximate first-order Nash equilibria and stationary points in nonconvex-concave and
nonconvex-strongly concave min-max problems. These guarantees have later on been shown to
be near-optimal in the strongly concave case [33], and are conjectured to be so in the non-strongly
concave case. Closing this gap is a well-known open problem in the corresponding community.

Nonconvex-nonconcave optimization with a small maximization domain. In [53], I
have studied nonconvex-nonconcave problems under the assumption that the maximization
set Y has a small diameter–decreasing as some positive power of the target accuracy level ε.
This regime is relevant for applications, in particular in the task of adversarially robust training.
Specifically, under the assumption that the functions f(x, ·) are k-order regular for each x ∈ X,
I derive upper and lower bounds on the critical diameter D̄ such that having diam(Y ) ≤ D̄
allows to replace the task of searching for an ε-first-order stationary point of f(x, y) with that of
searching for an O(ε)-stationary point of its kth-order Taylor approximation in y. This reduction
leads to efficient algorithms for finding stationary points in nonconvex-nonconcave problems.

Efficient algorithms for large-scale multiclass learning. In [3], I applied the machinery
of first-order methods for convex-concave saddle-point problems to the task of training multiclass
linear classifiers with a large number of classes on massive datasets. More specifically, the goal
was to efficiently train a linear classifier with a very large number of classes k, features d, and
sample size n, via regularized empirical risk minimization, focusing on so-called Fenchel-Young
losses [10] that can be represented as the maximum of a finite number of affine functions. This
leads to well-structured bilinear saddle-point problems, which can be efficiently solved with
primal-dual first-order algorithms such as mirror descent or Mirror Prox ([45, 49]) equipped with
sampling techniques to reduce the time complexity of an iteration. In the regime of moderate k,
existing variance reduction techniques allow for O(d) or O(d+ n) complexity of an iteraion by
sampling over the training examples ([59, 28, 61, 19]) in combination with sampling over the
features [58, 62] which leads to O(d+ n) runtime but allows for more flexibility with regards to
the problem geometry and better variance control. These complexity estimates are sublinear in
the size of the problem input O(dn). However, in the multi-class setup with a very large k, the
iteration runtime for these approaches changes to O(dk) or O(dk+nk), and becomes prohibitively
large – in fact, linear in the combined size of the primal and dual variables. In [3], I address this
challenge by designing ad-hoc bilevel sampling schemes in combination with a careful choice
of proximal geometry. In particular, for multiclass support vector machines (SVM) with `1
regularization, the resulting algorithm has runtime O(d+ n+ k) per iteration, i.e., is sublinear
in the input size. To the best of my knowledge, this result is the first of its kind for multiclass
linear classification. Extending it to the case of multiclass logistic regression is an open problem.
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2.3 Optimization and performance estimation with non-Euclidean geometry

In [22], Drori and Teboulle proposed a new technique for analyzing the worst-case performance
of first-order proximal algorithms. The technique, called performance estimation, allows to
explicitly obtain a worst-case instance in a particular problem class (such as, for example, the
class of minimization problems with a convex and smooth objective function) and for a specific
optimization algorithm. The worst-case instance is given as an optimal solution to certain convex
program. In recent years, performance estimation techniques have found numerous applications
in optimization theory (see, e.g., [34, 31, 64, 18, 63]). However, the existing techniques of
performance estimation do not extend beyond the Euclidean case, i.e., require the distances and
gradient magnitudes to be measured in `2-norm; this allows to cast performance estimation as a
semidefinite program using the equivalence between positive-semidefinite and Gram matrices [65].

However, in optimization it is often beneficial to work with different geometries that better
“fit” the model assumptions, such as `1-norm or the matrix nuclear norm. Usually, algorithms
adapted to such non-Euclidean geometries are formulated and analysed in terms of the Bregman
divergence adapted to the norm in question [8]—namely, with a potential function that is strongly
convex with respect to the norm in question. Making a step further, the recent works [6, 36]
introduced the notions of relative smoothness and strong convexity, where the corresponding
properties are defined directly in terms of a Bregman divergence, bypassing the norm whatsoever.
This includes the cases where there exists no suitable norm, as the Bregman potential is not
strongly convex; however, even for the cases where a norm does exist (such as, e.g., entropy-type
geometry on the probability simplex), relative smoothness and strong convexity lead to larger
functional classes than those defined in terms of the corresponding norm, which results in gaps
between the known upper and lower complexity estimates. Therefore, it is an interesting question
whether performance estimation could be formulated in a computationally tractable form in
such non-Euclidean situations. In a work with R. Dragomir (now at EPFL), which has formed
a chapter of his PhD thesis [20, Chap. 5], we resolved this question in the positive, finding a
convex programming formulation of performance estimation for entropy-smooth minimization.

Nesterov-type acceleration in the class of functions smooth with respect to entropy.
Our next goal is to apply the framework to the question of whether it is possible to accelerate first-
order methods “à la Nesterov” [46] for the corresponding functional class. This is an intriguing
question: on one hand, Dragomir et al. [21] recently showed that acceleration is impossible under
relative smoothness with respect to a certain adversarially constructed Bregman divergence.
On the other hand, in the case of entropy one has additional algebraic structure lacking in the
general case [7]. Overall, some preliminary heuristic considerations indicate that acceleration in
this context might not be possible. In the future, I hope to resolve this question rigorously.
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