Math 7252: High-Dimensional Statistics

Fall 2025
Schedule & location: M/W 2pm-3:15pm, Skiles 269
Instructor: Dmitrii M. Ostrovskii — ostrov@gatech.edu — Skiles 263
Office hours: M/W 4pm-5:30pm, Skiles 269 + on request by email
Canvas: https://gatech.instructure.com/courses/480610

Disclaimer. This course is targeted primarily at graduate students whose research interests
are in statistical theory and mathematics of data, as well as at the intersection of these with
information theory and optimization. Along with classical topics—concentration inequalities
and their applications in high-dimensional estimation, covariance matrix estimation, sparse
recovery, compressive sensing—we will cover some very modern developments: estimation under
structural constraints, modern robust estimation, quantum tomography. Some open problems
will be introduced and discussed. Some of the above will be offered as final presentation topics.

Prerequisites. Probability at the level of Math 6241 is preferable, but not required. There
is a some overlap of topics with Math 7251, but this class provides a different outlook on these.

Literature. Vershynin’s monograph [Ver18] covers the bulk of the first 7 topics. In addition,
my ISyE 8803 lecture notes ([LN] below), shared on Canvas, will be heavily used in the first
weeks, and occasionally later. Some dedicated references for separate topics are provided below.

Outline of topics. Mileage may vary, so the list below is approximate — but representative.

e Probability recap. Chernoff’s method. Gaussian tail bounds and Stein’s phenomenon [LN].
e Subgaussian random variables, their sums and maxima [LN], [Ver12].
e Subexponential distributions. Bernstein’s inequality, £o-norm of a Gaussian vector [Ver12].
o Applications: Johnson-Lindenstrauss lemma, Grothendieck inequality & MAX-CUT.
e Estimation of covariance and Gram matrices [Verl2].
o Applications: random-design linear regression [HI<712], Newton’s method [TBA],
graph sparsification [SS08], community detection [Verl8].
e Matrix Bernstein [Trol5, Verlg].
Symmetrization and decoupling [Ver1g].

o Applications: U-statistics [DIP(G12, Chapter 3], estimation of moment tensors [LN].
Stochastic processes. Gordon, Slepian and Sudakov. Dudley’s chaining method [Ver18].
Robust estimation of mean & covariance [Minl5, WM17]. Equiaffine estimators [OR19].
Near-optimal estimator of Lugosi-Mendelson [LLM19] and tractable version [Hop20].
Sparse recovery in direct observations (denoising) and linear measurements [CRPW12].
Low-rank matrix recovery [CRPW12]. Quantum tomography [TBA].

“Conventional” super-resolution, a-la Candes [CI'G13] or Tang-Bhaskar-Recht [TBR14].
Estimation under shift-invariance, or “super-resolution beyond the Abbe limit” [Ost24].
o Open problem: Deconvolution under shift-invariance.

Contact and office hours. The best way to contact me is by email (please add “Math 7252”
to the subject line), in person in the office hours, or by appointment (better in the afternoon).

Grading. 20% x 4 homework assignments; 20% final presentation (topics TBA in November).

Attendance. In general, I do not keep track of attendance. However, if attendance drops be-
low a certain point, I reserve the right to start controlling it with modest bonuses and penalties.


https://gatech.instructure.com/courses/480610
https://gatech.instructure.com/courses/451798/files/58022453?wrap=1
https://gatech.instructure.com/files/64688873/download?download_frd=1&verifier=CtNwrSHCsuhfosdyCu2jDcGb2rJeNzxSMKcGLNbC
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