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Disclaimer. At a high level, these lectures follow the outline of Brannan and Boyce (2015) [BB15].
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Chapter 1

First-order linear equations

Preliminaries

Recap of the introductory lecture: a general 1st-order ordinary differential equation (ODE)
with independent variable t and dependent variable (or unknown function) u : t 7→ u(t) has the form

Φ(t, u, u′) = 0 (1.1)

where Φ : R3 → R is some function defining the equation.1 Recall also that any differentiable
function u : I → R that satisfies (1.1) for all t in some interval I, is called a (particular) solution
of (1.1) on I, and the set of all such functions is called the general solution or solution set
of (1.1). Sometimes, the algebraic equation Φ(t, u, v) = 0 can be solved for v, in which case (1.2)
reduces to

u′ = F (t, u) (1.2)

for some function F : R2 → R. We call (1.2) a 1st-order ODE in the standard (or normal)
form. Not every ODE can be put to the standard form, but we shall only be concerned with such
ODEs.

In fact, there is no general method for “solving” an arbitrary first-order ODE.2 This task can be
done numerically, i.e. one can approximate u(t) with given accuracy; we shall briefly discuss such
numerical methods at some point later on. In this chapter, we shall focus on some subclasses of 1st-
order ODEs that can be solved exactly: separable (Sec. 1.1), linear (Sec. 1.2), and autonomous
(Sec. 1.5) equations. Some other equations that can be reduced to these types; we shall briefly
mention those.3

1.1 Separable equations

In this section, we shall use x and y instead of t and u; the reason for this shall become clear shortly.

1Note that Φ(t, u, v) = 0 is simply an algebraic (“usual”) equation in variables t, u, v. It becomes an ODE when we
impose the dependencies u = u(t) and v = u′(t).

2Informally, expressing solutions u = u(t) in terms of “elementary” functions and algebraic operations over them.
3The sections in this chapter roughly correspond to Secs. 2.1–2.5 in [BB15].
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Definition 1. A 1st-order ODE of the form

y′ =
p(x)

r(y)
, (1.3)

where p, r are some functions, is called separable.

In other words, an ODE (1.2) is separable if its rate function F decouples into the product of
two terms, each term depending only on its own variable. Of course, both examples from Sections
1.1-1.2 (the Newton law of cooling and the population dynamics equations) are separable. Also, the
choice of p and r, for a specific equation, is not unique: multiplying p, r by c 6= 0 does not change (1.3).

Separation of variables. This is a general method for solving separable 1st-order ODEs. Let
us first present the method itself, before any justification. Let P (x) and R(y) be, respectively, the
(arbitrary) antiderivatives for p(x) and r(y); in other words,

P (x) =

∫
p(x)dx, R(y) =

∫
r(y)dy

or, equivalently, P ′(x) = p(x) and R′(y) = r(y). Introducing the differential dy := y′(x)dx and
multiplying by r(y), we rewrite (1.3) in the differential form:

r(y)dy = p(x)dx. (1.4)

Now let’s integrate separately both sides of this equation, treating both x and y as independent
variables. This gives R(y) + C1 = P (x) + C2, where C1 and C2 are two arbitrary constants, that is

R(y) = P (x) + C (1.5)

where C is an arbirary constant. As it turns out,(1.5) is an equation of the integral curves of (1.4):
in other words, any function y = φ(x) that satisfies (1.5) ∀x ∈ I, also satisfies (1.1) on I. In
this sence, (1.5) already defines the solutions of (1.1) implicitly. Furthermore, the solution to
the initial value problem, i.e. the solution that satisfies y(x0) = y0—or the integral curve passing
through (x0, y0)—is (1.5) with

C = R(y0)− P (x0). (1.6)

Proof. We have to prove that a function y = y(x) satisfying (1.5) also satisfies (1.3) (i.e. that (1.5)
describes integral curves for (1.3)), and conversely, that any integral curve satisfies (1.5) for some C.

1. Let y = φ(x) satisfy (1.5), that is

R(φ(x)) = P (x) + C.

Then, differentiating both sides in x and using the chain rule, we get

R′(φ(x))φ′(x) = P ′(x),

that is
r(φ(x))φ′(x) = p(x). (1.7)

Dividing over r(φ(x)) we get φ′(x) = p(x)
r(φ(x)) So, y = φ(x) is indeed a solution of (1.3).

3



2. Conversely, assume that y = φ(x) satisfies (1.3). Then it satisfies (1.7). The two sides of (1.7)
are functions of x; since these functions are equal (for x ∈ I), their antiderivatives are also
equal, up to an additive constant. Meanwhile, the antiderivative of the RHS is P (x), and the
antiderivative of the LHS is R(φ(x)). Thus, R(φ(x)) = P (x) + C, as claimed.

3. Moreover, by the fundamental theorem of calculus we also get∫ x

x0

r(φ(t))φ′(t)dt =

∫ x

x0

p(t)dt, that is

∫ φ(x)

φ(x0)
r(φ(t)) dφ(t) =

∫ x

x0

p(t)dt,

that is
R(φ(x))− P (x) = R(φ(x0))− P (x0).

In other words, the solution of (1.3) passing through the point (x0, y0) is given by (1.5), (1.6).

Example 1.1.1. Solve the initial value problem and determine the interval where the solution
exists:

dy

dx
= −x

y
, y(0) = 2.

In the differential form, the equation becomes

xdx = −ydy,

which integrates to
x2 + y2 = C ∀C ∈ R.

In fact, since in the LHS we have a sum of squares, C < 0 give no integral curves. When C > 0,
the corresponding integral curve is an origin-centered circle with squared radius C := r2 > 0. This
curve consists of two solutions,

y(x) = ±
√
r2 − x2,

each existing on the interval I(r) := (−r; r). Plugging in the initial condition we get r = 2. This also
allows to choose the sign: y(x) =

√
4− x2 satisfies the condition, while

√
4− x2 does not. Hence,

the IV problem solution is given by

y(x) =
√

4− x2, −2 < x < 2.

Solve the previous problem replacing the initial condition with (a) y(0) = 0; (b) y(2) = 0.

In the case (a), we get C = 0, and the integral curve reduces to a single point (i.e. I = ∅). In
the case (b), we get C = 4, but we cannot choose the sign: y(x) = ±

√
4− x2 both work – in other

words, the IVP has two solutions. In both cases, the IVP turns out to be ill-posed. Later on, we
shall find out assumptions under which the IVP is guaranteed to be well-posed, i.e. admit a unique
solution existing on a nontrivial interval.

Example 1.1.2 ([BB15, Ex. 2.1.2]). Solve the initial value problem

dy

dx
=

3x2 + 4x+ 2

2(y − 1)
, y(0) = −1

and determine the interval I where the solution exists.
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Here p(x) = 3x2 + 4x+ 2 and r(y) = 2(y − 1); in the differential form the equation is

2(y − 1)dy = (3x2 + 4x+ 2)dx.

Integrating this, we get the equation of integral curves:

y2 − 2y = x3 + 2x2 + 2x+ C.

To identify the curve satisfying the initial condition y(0) = −1, we plug in (x0; y0) = (0;−1) into
this equation, and find C = y20 − 2y0 − (x30 + 2x20 + 2x0) = 3, that is

y2 − 2y = x3 + 2x2 + 2x+ 3.

Now, let’s find the solution explicitly (and find I). Solving the previous equation for y, we get

y = 1±
√
x3 + 2x2 + 2x+ 4.

Note that this describes two functions:

φ+(x) = 1 +
√
x3 + 2x2 + 2x+ 4,

φ−(x) = 1−
√
x3 + 2x2 + 2x+ 4,

and we must identify the one satisfying the initial condition. We find that φ+(0) = 3 and φ−(0) = −1;
hence, y = φ−(x) is our solution. Finally, finding the interval I where this solution exists—a.k.a.
finding the interval where φ− is well-defined—amounts to solving the inequality x3+2x2+2x+4 > 0.
While cubic equations can be solved by a general method, the formulas are bulky and no sane
person remembers them. Instead, we guess one root:

x = −2.

(This is an “educated” guess: we need “-” because all coefficients in the left-hand side are positive.)
Thus, by the fundamental theorem of algebra, we can factor out x+ 2 from x3 + 2x2 + 2x+ 4:

x3 + 2x2 + 2x+ 4 = (x+ 2)(ax2 + bx+ c).

Equating the coefficients of the polynomials in the LHS and RHS (this is called “the undetermined
coefficients method”), we get a = 1, b = 0, c = 2. That is,

x3 + 2x2 + 2x+ 4 = (x+ 2)(x2 + 2).

Since x2 + 2 > 0 for all x, there are no other (real) roots; the sign of x3 + 2x2 + 2x+ 4 is the same
as the sign of x+ 2. Hence, I = (−2,+∞).

Example 1.1.3 (∗based on [BB15, Ex. 2.1.1]). Solve the initial value problem

dy

dx
=

x2

1− y2
, y(0) = −2.

and determine the interval I where the solution exists.
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Proceeding as in the previous example, we find the equation of integral curves:

y3 − 3y + x3 = C.

Plugging in the initial conditions we get C = −2, i.e. the integral curve passing through (0;−2) is

x3 + y3 − 3y + 2 = 0.

Now, to obtain the IV problem solution explicitly, one could solve this cubic equation for y. But we
proceed more elegantly: instead of finding the function y(x), let us find instead x(y). Graphically,
passing from y(x) to x(y) corresponds to interchanging the x and y axes, i.e. reflecting the plot
w.r.t. the line y = x. To that end, solving the equation for x we get:

x(y) = −(y3 − 3y + 2)1/3.

To plot the RHS, we first guess one root y = 1 of the RHS, then find (by undetermined coefficients
or guessing another root y = −2) that y3− 3y+ 2 = (y+ 2)(y− 1)2. This allows to sketch the plot of
the RHS (see Fig. 1.1): the RHS changes sign only once at y = −2, its derivative vanishes at y = ±1,
and x(−1) = −1. Redrawing the curve in the xy coordinates, we conclude that I = (−1,+∞).
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Figure 1.1: Integral curves for separable ODEs in Examples 1.1.1– 1.1.3.
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1.2 Linear equations

Recall the form of a linear nth-order ODE with independent variable t and function u = u(t):

a0(t)u
(n)(t) + a1(t)u

(n−1)(t) + · · ·+ an(t)u(t) = b(t)

for some a0(t), ..., an(t) and b(t). It is called homogeneous if b(t) ≡ 0, and nonhomogeneous otherwise.
Such an ODE can always be put to the standard form by dividing over a0(t). When n = 1 this gives

u′(t) + p(t)u(t) = g(t). (1.8)

Note that in the homogeneous case, we have a separable equation that can be solved by separating
the variables (see Section 1.1). Nonhomogeneous linear equations are not separable, yet can also be
solved. This can be done by a general method explained below.

Method of integrating factors. Let µ(t) > 0 be a differentiable function, yet to be specified.
Multiplying (1.8) by µ(t) we get

µ(t)u′(t) + µ(t)p(t)u(t) = µ(t)g(t). (1.9)

Now, take µ(t) of the form
µ(t) = eP (t)

where P (t) =
∫
p(t)dt is an antiderivative of p(t). Note that µ(t) > 0 and, by the chain rule,

µ′(t) = µ(t)p(t).

Thus, (1.9) is reduced to
µ(t)u′(t) + µ′(t)u(t)︸ ︷︷ ︸

v′(t)

= µ(t)g(t)︸ ︷︷ ︸
h(t)

(1.10)

where v(t) := µ(t)u(t) is the new unknown function (even though µ(t) is known, v is unknown
because u is), and h(t) is the new RHS. Now, behold: this is a separable equation; we can solve it
by the separation of variables:

v(t) =

∫
h(t)dt+ c =

∫
µ(t)g(t)dt+ c =

∫
eP (t)g(t)dt+ c,

and then recover the solution of (1.8) by dividing over µ(t):

u(t) =
1

µ(t)
v(t) = e−P (t)

(∫
eP (t)g(t)dt+ c

)
where P (t) =

∫
p(t)dt. (1.11)

Remark 1.2.1. By the fundamental theorem of calculus, we can rewrite (1.11) with definite
integrals:

u(t) = e−P (t)

(∫ t

t0

eP (s)g(s)ds+ u0

)
where P (t) =

∫ t

t0

p(s)ds, (1.12)

for arbitrary t0, u0 ∈ R. At the same time, this is the solution for the IV problem with u(t0) = u0.
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Example 1.2.1 (cf. [BB15, Ex. 2.2.1]). Solve the initial value problem

u′ − 2u = 4− t, u(1) = −5

4
.

Here p(t) ≡ −2 and g(t) = 4− t. Instead of using the ready formula (1.12), let’s be incremental
and find the general solution first, cf. (1.11). We take P (t) = −2t, then µ(t) = e−2t and

v(t) =

∫
(4− t)e−2tdt = −2e−2t −

∫
te−2tdt = −2e−2t +

1

4
(2t+ 1)e−2t + c =

1

4
(2t− 7)e−2t + c

where we took the second integral by parts. This results in

u(t) =
1

4
(2t− 7) + ce2t.

Plugging in the IV condition we find c = 0, so the desired solution is u(t) = 1
4(2t− 7), on t ∈ R.

Example 1.2.2. Solve the initial value problem

tu′ − 2

t
u = te−t, u(1) = −1.

We rewrite the equation in standard form

u′ − 2

t2
u = e−t,

so that p(t) = −2t−2 and g(t) = e−t. Then compute P (t) as in (1.12):

P (t) =

∫ t

t0

−2s−2ds = 2t−1
∣∣∣t
t0

=
2

t
− 2

t0
=

2

t
− 2.

Whence we get

µ(t) = e2t
−1−2,

v(t) =

∫ t

t0

µ(s)g(s)ds+ u0 = e−2
∫ t

t0

e2s
−1−sds+ u0.

The last integral cannot be evaluated in terms of elementary functions, so we leave it as is. Thus,

u(t) =
v(t)

µ(t)
= e2−2t

−1

(
e−2

∫ t

t0

e−2+2s−1−sds+ u0

)
= e−2t

−1

(∫ t

t0

e2s
−1−sds+ e2u0

)
= e−2t

−1

(∫ t

1
e2s
−1−sds− e2

)
.

If you have ample time, you might want to verify the solution, or at least the initial condition.
Finally, we note that the function in the RHS is defined for t 6= 0, and diverges to ∞ at t = 0.
Hence, the solution to the IV problem is defined on t > 0 (since this interval includes t0 = 1).
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1.3 Modeling with first-order ODEs

We consider two examples in this section. In both of them, we shall model a physical pro-
cess/experiment with a first-order linear ODE. In fact, many ODEs arising in mathematical models
are lineal, though not first-order. Fortunately, soon we shall learn how to reduce a higher-order
linear ODE to a first-order linear system of ODEs, and also some methods for solving such systems.

Example 1.3.1 (Water tank). A tank initially contains 40 pounds of salt dissolved in 600 gallons
of water. Starting at time t = 0, water that contains 1/2 pound of salt per gallon is poured into
the tank at the rate of 4 gal/min and the mixture is drained from the tank at the same rate (see
Fig. 1.2).

a. Write down a diff. equation for Q(t), the amount of salt (in pounds) in the tank at time t > 0.
b. Solve the DE to determine an expression for Q(t).
c. After a long period of time, what happens to the concentration of salt in the tank?

To begin with, we observe that the rate of change of the amount of salt in the tank, that is dQ
dt ,

is comprised of the two terms:

dQ

dt
= “rate in”− “rate out”.

Naturally, let us measure Q as pounds (pnd), and t in minutes (min); then both sides of the above
equation are measured in pounds-per-minute (pnd/min).4 Now, for the “rate in” we have

“rate in” =
1

2

pnd

gal
· 4 gal

min
= 2

pnd

min
.

For the “rate out,” we are not told what the concentration term is, so let’s figure it out. What
happens here, really? Well, it is reasonably to assume that salt in the tank gets uniformly dissolved
in the water – and it is this “properly mixed” water that flows out of the tank, isn’t it? As such, the
concentration of salt in the water flowing out, at time t, is given by Q(t)pnd

600gal = Q(t)
600

pnd
gal . As the result,

“rate out” =
Q

600

pnd

gal
· 4 gal

min
=

Q

150

pnd

min
.

Omitting the units, we arrive at the following ODE for Q(t)

Q′(t) +
1

150
Q(t) = 2.

This is, in fact, a first-order linear ODE with constant coefficients. The corresponding IVP has the
initial condition that Q(0) = 40. We compute the integrating factor µ(t) = e

∫
1

150
dt = e

t
150 , whence

Q(t) = e−
t

150

∫
2e

t
150dt = e−

t
150 (300e

t
150 + C) = 300 + Ce−

t
150

and C = 40− 300 = −260 by plugging the initial condition. Thus,

Q(t) = 300− 260e−
t

150 .

4Note that units are helpful here, as a sanity check. In particular, it only makes sense to add/subtract two quantities
measured in the same units; besides, if the units of f are α (written as [f ] = α) and those of g are β, then [fg] = αβ.
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Figure 1.2: Water tank problem (Example 1.3.1).

Clearly, Q(t) → 300 as t → ∞, which answers the last question. Note also that we could arrive
at the same conclusion without solving the equation, but via physical intuition. Indeed, since the
concentration of salt in the incoming water is kept constant at 1

2
pnd
gal , and the water in the tank

gradually gets replaced with incoming water, after a long time the concentration of salt in the tank
will approach 1

2
pnd
gal , which corresponds to 300 pnd of salt in 600 gal of water.

The process we used in the previous example roughly followed this outline:

1. Construct a differential equation to model a real-world situation.

2. Solve the differential equation so that we can interpret its solution to characterize a system.

3. Analyze mathematical statements and solutions of differential equations.

The above “algorithm” is used throughout this course. Oftentimes, the first step is the most difficult.

Example 1.3.2 (World population growth). The world population in 2018 was about 7.6 billion.

1. The world population is increasing at a rate of 1.2% per year. If the growth rate remains fixed
at 1.2%, how long will it take for the population of the world to reach 20 billion people?

2. Assume Earth cannot support a population beyond 20 billion people. If the population growth
rate is also proportional to the difference between this limiting value and the current value.
What is the expression that gives the world population as a function of time?

1. First note that, literally, % = 0.01. Hence, the rate of increase 1.2%/year means r = 0.012/year.
That is, we have the following ODE for the world population P (t) at time t:

P ′ = rP = 0.012P
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where the units are [P ] = bln, [P ′] = bln/year, and [r] = year−1; in the ODE the units are hidden.
Solving it with the condition that P > 0 we get P (t) = ert+C for any C ∈ R, i.e. P (t) = ce0.012t for
c > 0. The initial condition gives c = 7.6. (What are the units of c? And those of the factor e0.012t?)
Finally, defining the moment of reaching 20 bln amounts to solving the following equation for t:

7.6e0.012t = 20.

Whence 20 bln will be reached in 1
0.012 ln(20/7.6) ≈ 80.632 years.

2. In the second case, the equation becomes

P ′ = λrP (Pmax − P )

where Pmax = 20bln, and λ the normalization factor. Note that [λ] = bln−1. (Why?) Moreover,
it would be reasonable to assume that λ = 1/Pmax, since in this case the equation reduces to the
previous one for small values of P , i.e. those far away from Pmax. (Give a motivation for this.) Thus,

P ′ = rP

(
1− P

Pmax

)
= 0.012P

(
1− 1

20
P

)
.

This is a separable ODE, and separating the variables we get

20dP

P (20− P )
= 0.012 dt.

By partial fractions
20dP

P (20− P )
=
dP

P
+

dP

20− P
,
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and integration gives

ln

(
P

20− P

)
= 0.012t+ C, C ∈ R.

To solve for P we note that P
20−P = −1 + 20

20−P , whence 20
20−P = 1 + ce0.012t for c > 0. From the IV

condition we find c = 20
20−7.6 − 1 = 7.6

20−7.6 = 0.613, therefore

P (t) = 20

(
1− 1

1 + 0.613e0.012t

)
= 12.26

e0.012t

1 + 0.613e0.012t
.

Note that for small t, the denominator approaches 1, and the population grows nearly exponentially.
As t increases, the population saturates at the level 12.26/0.613 = 20, never reaching it (Fig. 1.3).

13



1.4 Existence and uniqueness of solutions in first-order IVPs

In this lecture, we shall explore some differences between linear and nonlinear 1st-order ODEs. Our
main focus will be on the conditions for the corresponding IVPs to be “well-posed,” i.e. have a
unique solution. To this end, we shall formulate two theorems that give sufficient conditions for
linear and general first-order ODEs, respectively, and look at some examples that “break” them. Our
second goal would be understanding how to determine the intervals of existence for IVP solutions.

But first, consider a motivating example.
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Figure 1.4: Nonlinear IVP with nonunique solutions (Example 1.4.1).

Example 1.4.1. Consider the IVP

y′ = 8ty1/5, y(0) = 0.

(a) Is the ODE linear? (b) Solve the IVP explicitly and find the interval where the solution exists.

If course, the ODE is nonlinear. Separation of variables leads to y−1/5dy = 8tdt, which results in

y4/5 =
16

5
t2 + C

for C ∈ R. Plugging in the IV condition we find C = 0, so the corresponding implicit equation reads

y4/5 =
16

5
t2.

Solving for y we get

y = ± 32

55/4
t5/2.

Now, behold: I cheated when separating the variables! We divided by y1/5, but ignored the possibility
that y = 0. This case gives a stationary solution y ≡ 0 that also satisfies the IV condition. Thus,
the IVP has three different solutions, each of them existing on the whole real axis (see Fig. 1.4).

We shall revisit Example 1.4.1, and give other ”bad” examples, later. Now we state the first
result.
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Theorem 1.4.1 (Existence & uniqueness of solutions for linear IVPs). Let (α, β) be an open interval
containing t0 and such that the functions p, g are defined and continuous on (α, β). Then the IVP

y′ + p(t)y = g(t), y(t0) = y0 (1.13)

has a unique solution for any y0 ∈ R.

Note that the premise of Theorem 1.4.1 allows the interval to be infinite, i.e. with α, β ∈
{−∞,+∞}.

Proof. In a nutshell, the key idea is that under the premise of the theorem, each step of the
integrating factor method is correct, so the method can be applied and gives the general ODE
solution. One can then identify the IVP solution among these solutions, and verify its uniqueness.

1o. First note that since p is continuous (and thus integrable) on I := (α, β) 3 t0, the function

µ(t) := exp

(∫ t

t0

p(s)ds

)
is defined, positive, and differentiable on I, with µ′(t) = p(t)µ(t). In particular, µ is continuous on I;
therefore, µg is also continuous, and thus integrable. As such, for any C ∈ R the function

φ(t) :=
1

µ(t)

(∫ t

t0

µ(s)g(s)ds+ C

)
is defined on I, and is differentiable on I with derivative given by

φ′(t) =
1

µ(t)
µ(t)g(t)− µ′(t)

µ2(t)

(∫ t

t0

µ(s)g(s)ds+ C

)
= g(t)− µ′(t)

µ(t)
φ(t) = g(t)− p(t)φ(t).

Here we first used the product rule, then the chain rule on 1/µ(t). Thus, φ(t) satisfies the ODE.
Moreover, φ(t) with C = y0 satisfies the IV condition. Thus, we showed that (1.13) has a solution.

2o. To show uniqueness, assume that φ and φ̃ are two solutions of (1.13), and define the
“residual”

η(t) := φ(t)− φ̃(t).

By linearity, η satisfies the following IVP

η′ + p(t)η = 0, η(t0) = 0. (1.14)

Here, the ODE is homogeneous and separable. It has a stationary solution η ≡ 0, which clearly
solves (1.14). But separation of variables cannot give other solutions of (1.14), as it starts with

division over η 6= 0. (It gives η(t) = ce
−

∫ t
t0
p(s)ds

for c 6= 0.) Thus, η(t) ≡ 0 is the unique solution
of (1.14).

Example 1.4.2. Find the largest interval I over which the solution to the following IVP is defined:

(9− t2)y′ + 5ty = 3t2, y(−1) = 1.
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Figure 1.5: Illustration of the conditions in Theorem 1.4.2.

Dividing by 9−t2 we put the ODE in standard form y′+p(t)y = g(t) with p(t) = 5t
9−t2 , g(t) = 3t2

9−t2 .
Each of the functions p, g has singularities at ±3 and nowhere else. We can apply Theorem 3.1
with any open interval containing t0 = −1 but neither of the points ±3. The largest such interval
is (−3, 3), which is the answer. Note that we did not have to solve the IVP to reach this conclusion.
Nor did we use the value y0 = 1 in the IV condition: the answer would not change for any other y0.
These two observations fully agree with Theorem 1.4.1 and generalize for any linear IVP.

Theorem 1.4.2 (Existence & uniqueness of solutions for general first-order IVPs; Fig. 1.5). Assume
that functions F, ∂∂yF are continuous in some open rectangle R = (α, β)× (γ, δ) that contains (t0; y0).
Then the IVP

y′ = F (t, y), y(t0) = y0

has a unique solution on some interval (α̂, β̂) ⊆ (α, β) that contains t0. Moreover, in the case
where (γ, δ) = (−∞,+∞), one can take α̂ = α and β̂ = β. (I didn’t mention the last part in class.)

Theorem (1.4.2) can be proved via the implicit function theorem from calculus; we omit this
proof.

• The condition in the premise of the theorem is sufficient, but by no means necessary: there are
some nonlinear IVPs where the condition is not satisfied, yet solutions exist and are unique.

• Note that in Theorem 1.4.2, existence and uniqueness of solution is not guaranteed on the
whole interval (α, β), only on some potentially smaller interval (α̂, β̂).

• Note that Theorem 1.4.2 includes Theorem 1.4.1 as a special case. Indeed, linear IVP (1.13)
is a general one with F (t, y) = −p(t)y + g(t) and ∂

∂yF (t, y) = −p(t). Assuming that both p

and g are continous on the open interval (α, β) that contains t0, the two functions ∂
∂yF

and F are continuous in the open rectangle (α, β)× (−∞,+∞) that contains (t0; y0).
5 Thus,

5The continuity of ∂
∂y
F is obvious. Meanwhile, in order to conclude that F is continuous, we treated p(t) and y as

continuous functions in two variables, and used the result about the continuity of the product of continuous functions.
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Theorem 1.4.2 implies that any linear IVP (1.13) with continuous p, g has a unique solution on
the interval containing t0 and in which p, g are continuous. In particular, existence/uniqueness
of solutions does not depend on y0 for a linear IVP, while for nonlinear IVP it generally does
(Example 1.4.1).

Now, let us revisit Example 1.4.1 and see why the sufficient condition of Theorem 1.4.2 is not
satisfied. Here F = 8ty1/5 is continuous on R2, yet ∂

∂yF = 8
5 ty
−4/5 is undefined on the straight

line y = 0 in R2. As such, ∂
∂yF cannot be continuous on any rectangle R = (α, β)× (γ, δ) crossing

this line, i.e. such that γ < 0 < δ, and only such rectangles might contain (0, 0). Thus, Theorem 1.4.2
does not allow to make a conclusion about the IVP in Example 1.4.1. However, if we change the IV
condition from y(0) = 0 to y(0) = 1, then the new IVP will have a unique solution by Theorem 1.4.2.

Example 1.4.3 (cf. Example 1.1.2). Recall Example 1.1.2. Here F and ∂
∂yF have a singularity

at y = 1:

F =
3t2 + 4t+ 2

2(y − 1)
,

∂

∂y
F = −3t2 + 4t+ 2

2(y − 1)2
.

Both these functions are continuous on any rectangle that does not cross the horizontal line y = 1
(touching the line on a boundary is allowed, since the rectangle is open). Since one can draw
such a rectangle around the point (t0; y0) = (0;−1), e.g. (−∞,+∞)× (−∞, 0), it follows that the
IVP has a unique solution in some interval (α̂, β̂) containing t0 = 0. However, such rectangles
cannot be with (γ, δ) = (−∞,+∞), since they are not allowed to cross y = 1. Hence, we cannot
conclude that (α̂, β̂) = (−∞,+∞), i.e. that the solution exists on R. Instead, we must solve the
IVP and examine its solution. And indeed, in Example 1.1.2 we found that the IVP solution exists
on (−2,+∞).

The last example was not covered. We reiterate that, while for a linear IVP without singularities
in p and g the (unique) solution exists on the whole real axis, solution of a nonlinear IVP might exist
only on a smaller interval even when there are no singularities in F, F ′y. This is illustrated below.

Example 1.4.4 ([BB15, Example 2.4.4]). Consider the nonlinear IVP

y′ = y2, y(0) = 1.

Solving it via integrating factor and fitting the IV condition, we find the solution, existing on (−∞, 1):

y(t) =
1

1− t
, t < 1.

Note that, without solving the IVP, it is impossible to guess from the equation itself that the point t = 1
is in any way special: we really have to fit the initial value condition y(0) = 1 to discover this.
Moreover, if we change y(0) = 1 to y(0) = y0 > 0, then the solution y(t) = y0

1−y0t exists on (0, 1
y0

).
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1.5 Autonomous equations

Recall that autonomous equations are 1st-order ODEs of the form

y′ = f(y), (1.15)

in other words, those where the rate function F (t, y) = f(y). Previously, we have seen how to find
and classify critical points, or equilibria of such equations, i.e. the zeroes of f . In this lecture, we
shall learn to extract some additional information on the shape of solution curves near equilibria.

Convexity/concavity. A twice differentiable function y is called (locally) convex at t if y′′(t) > 0,
and (locally) concave at t if y′′(t) < 0. If y′′(t) = 0, then such t is called an inflection point of y.
Geometrically, the sign of y′′(t) corresponds to the direction of the curvature of the graph of y at t:

• If y′′(t) > 0, the graph is curved upwards (like ∪) at t;

• If y′′(t) < 0, the graph is curved downwards (like ∩) at t;

• If y′′(t) = 0, the direction of curvature changes at t.

This is shown in Fig. 1.5.
 

y arve
i

convex l

i
E

Figure 1.6: Function y(t) is locally convex at t < t0, concave at t > t0, and has inflection point at t0.

For example:
• et and t2 are convex functions on R;
• function ln(t) is concave on its domain t > 0;
• each of the functions t3, 1

1+et is convex at t > 0, concave at t < 0, has inflection point at t = 0.
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Curvature of solutions. Going back to ODEs, let y(t) be a particular solution to (1.15). By
the chain rule,

y′′ = f ′(y)y′ = f ′(y)f(y).

Thus, we can determine the direction of curvature of a given solution curve at t by only studying f .

Any nonstationary solution y(·) of an ODE (1.15) is locally convex at a given t when the
signs of f(y(t)) and f ′(y(t)) are the same, and concave when these signs are different.

Note also that a nonstationary solution can also have an inflection point at some t, since y′′(t) might
vanish at t because of f ′(y(t)) = 0, even though f(y(t)) 6= 0.

The above observation allows to understand the shape of solution curves close to critical points.

Example 1.5.1 (Logistic equation). Revisiting the second part of Example 1.3.2, consider the
equation

y′ = ry(1− y).

Here f(y) = ry(1−y) has zeroes at 0 and 1, which gives two stationary solutions: y(t) = 0 and y = 1.

1. Computing f ′(y) = r(1−2y), we see that f ′(0) > 0 and f ′(1) < 0, hence y ≡ 1 is asymptotically
stable and y ≡ 0 is unstable. (See Fig. 1.5)

2. Moreover, f(y) > 0 at y ∈ (0, 1) and f(y) < 0 at y < 0 and y > 1. So, any solution passing
through y0 ∈ (0, 1) increases, and any solution passing through y0 < 0 or y0 > 1 decreases.

3. Finally, for ε > 0 sufficiently small, solutions passing through y0 = 0− ε are concave, those
passing through y0 = 1 + ε are convex. Moreover, a solution passing through y0 = 0 + ε
and y0 = 1− ε must have an inflection point at some t1, be locally convex at t < t1 and locally
concave at t > t1. Intuitively, all this should be clear by noting that the first kind of solutions
run away from 0, the second kind must approach 1, and the third kind run away from 0 to 1.

• But now we see it directly. For example, at y0 = 0−ε we have f(y0) < 0 and f ′(y0) > 0.6

Thus, y′′ < 0 in this case. The reasoning is similar in other cases (y0 = 0 + ε, y0 = 1± ε).

6The 2nd inequality is since f ′(0) < 0 and f ′ is continuous, but we can also get it directly from the formula for f ′.
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Figure 1.7: Solution curves for the ODE in Example 1.5.1.
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Chapter 2

First-order linear systems

Preliminaries

Linear ODEs of order n. Recall that a linear ODE of order n > 1, in the standard form, is

u(n) + a1(t)u
(n−1) + ...+ an−1(t)u

′(t) + an(t)u = g(t) (2.1)

where t ∈ R is the independent variable; a1, ..., an, g are some functions that specify the equation.
In particular, a1, ..., an are called the coefficient functions; if they happen to be constants, we say
that the corresponding (linear) ODE is with constant coefficients. As before, a particular solution
of (3.2) on some interval I ⊆ R is any n times differentiable function u : I → R that satisfies (3.2)
for all t in I, and the general solution is the set of all particular solutions. For IVPs, order n > 1
requires n conditions to specify a solution. By definition, initial conditions for (3.2) are of the form

u(t0) = u0,

u′(t0) = u1,

...

u(n−1)(t0) = un−1

(2.2)

for some values u0, ..., un−1 ∈ R. Note that, compared to the first-order case, we added n − 1
additional conditions corresponding to the values of higher derivatives of u, from u′ and up to u(n−1).

The theory of linear ODEs of order n can be “handled” by extending the theory of first-order
linear ODEs in a rather straightforward fashion. In a nutshell, this is because one may convert such
an ODE into a first-order linear system of n differential equations through a “vectorization trick,”
trading the order for dimension. Thus, studying (3.2) reduces to studying first-order systems of
DEs. In this chapter, we shall learn some general properties of first-order linear systems of DEs
(and nth-order linear ODEs), including the question of solution existence/uniqueness for IVPs. For
linear systems of n equations with constant coefficients, we obtain general solutions in closed form.
Finally, we shall provide a full classification of critical points in the two-dimensional case (i.e. n = 2).
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2.1 Refresher of linear algebra

Let A be a square n× n matrix with real entries (which will be denoted as A ∈ Rn×n from now on):

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 .

Systems of linear equations. Recall that a system of n linear equations in n variables x1, ..., xn,

a11x1 + · · ·+ a1nxn = b1,

a21x1 + · · ·+ a2nxn = b2,

...

an1x1 + · · ·+ annxn = bn,

(2.3)

can be written as a single vector equation (i.e. in a vector form):a11 · · · a1n
...

. . .
...

an1 · · · ann


x1...
xn

 =

b1...
bn

 , or A~x = ~b, (2.4)

where ~x ∈ Rn is the unknown vector, and ~b ∈ Rn is known. (For convenience, all vectors are
column-vectors, i.e. n× 1 matrices.) The n× (n+ 1) matrix (A|~b) is called the augmented matrix
of (2.4) Geometrically, kth equation in (2.3) (kth row in (2.4)) specifies a hyperplane with normal
vector (

ak1 · · · akn
)>

=

ak1...
akn


and passing trough the origin ⇔ bk = 0. Solving (2.4) corresponds to finding each point where all
these n hyperplanes intersect. A linear system might have a unique solution, no solutions, or an
infinite number (continuum) of solutions, with no other possibilities. If ~b = ~0, the system is called
homogeneous, and always has a trivial solution ~x = ~0. A system with ~b 6= ~0 is called nonhomogeneous.

For any ~b, system A~x = ~b with a nonsingular A ∈ Rn×n has a unique solution A−1~b.

Thus, we get a plethora of equivalent conditions for n× n system A~x = ~b to have a unique solution:
• rank(A) = n, i.e. A is full-rank;
• det(A) 6= 0;
• Null(A) = {~0};
• rref(A) = I;
• A has a pivot in each row and a pivot in each column.

To solve the system we can invert A and multiply the result by ~b on the right. Alternatively, we can
run Gaussian elimination on the rows of the augmented matrix (A|~b), obtaining the matrix (I|A−1~b).
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Case n = 2. Clearly, A = (~u|~v) ∈ R2×2 is singular ⇔ ~u,~v are parallel vectors, i.e. either ~u = c~v
or ~v = c~u for some c ∈ R, or both. (~0 is parallel to any vector). Hyperplanes here are straight lines.

Example 2.1.1. Solve the linear system and determine if the lines intersect, are parallel, or
coincide:

x1 − 2x2 = −1,

−x1 + 3x2 = 3.

Find normal vectors for the lines.

We run Gaussian elimination on the augmented matrix – first top-to-bottom, then bottom-to-top:

(A|~b) =

(
1 −2
−1 3

−1
3

)
∼

R2←R2+R1

(
1 −2
0 1

−1
2

)
∼

R1←R1+2R2

(
1 0
0 1

3
2

)
.

The unique solution (and intersection point) is (x1;x2) = (3; 2). Normal vectors are, respectively,[
1
−2

]
,

[
−1

3

]
.

Eigenvalues. Recall that eigenvalues of A ∈ Rn×n are λ ∈ C such that A− λI is singular, that is

det(A− λI) = 0, (2.5)

where I is the identity matrix of appropriate size. Eq. (2.5) is called the characteristic equation for A.
Using the properties of determinant, one might show that pA(λ) := det(A − λI) is a polynomial
in λ of degree n, called the characteristic polynomial of A. Thus, eigenvalues are the roots of the
characteristic polynomial. By the fundamental theorem of algebra, any polynomial of degree n has n
complex roots counted with multiplicities. Since the entries of A are assumed real, the coefficients
of pA must be real, yet its roots might be complex. Yet, there are some restrictions on this:

• If A is real, and λ = α+ iβ is an eigenvalue (α, β ∈ R), then λ̄ = α− iβ is also an eigenvalue.

• If A is symmetric (i.e. A = A>), then its eigenvalues are real.

This is only a sufficient condition: indeed, the eigenvalues of

(
λ1 0
a λ2

)
are λ1, λ2 – regardless of a.

Eigenvectors and eigenspaces. Let λ ∈ C be an eigenvalue of A, then the subspace Null(A−λI)
of Cn must have a positive dimension, i.e. contain a nonzero vector. This subspace is called an
eigenspace of A corresponding to λ. Any ~v ∈ Null(A− λI) such that ~v 6= ~0 is called an eigenvector
of A corresponding to λ. Important results on the dimensionality of eigenspaces are listed below.

• The dimension of eigenspace corresponding to λ is at most the algebraic multiplicity of this λ.
In particular, if all eigenvalues of A are distinct, then all its eigenspaces are one-dimensional.

• Eigenvectors ~v1, ~v2 corresponding to different eigenvalues λ1 6= λ2 are linearly independent.
More generally, ~v1, ~v2, ..., ~vk corresponding to λ1 6= λ2 6= ... 6= λk are linearly independent. In
particular, if all eigenvalues of A are distinct, then ~v1, ..., ~vn form a basis that diagonalizes A:

A = V −1ΛV where Λ = Diag(λ1, ..., λn) and V =
(
~v1| · · · |~vn

)
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The eigenvectors for real eigenvalues are real; for complex eigenvalues they are complex. Moreover:

• If A is symmetric (A = A>), then its eigenvectors ~v1, ~v2 ∈ Rn corresponding to λ1 6= λ2 are

mutually orthogonal, i.e. ~v>1 ~v2 = 0.

• If A is real, and ~u+ i~v is an eigenvector corresponding to λ = α+ iβ, then its conjugate ~u− i~v
is an eigenvector corresponding to λ̄ = α− iβ.

Example 2.1.2. Find the eigenvalues and eigenvectors of (a) A =

(
5 2
2 1

)
and (b) B =

(
−5 −5

5 −5

)
.

(a). Here pA(λ) = (5−λ)(1−λ)−4 = λ2−6λ+1, so the eigenvalues are λ1,2 = 6±
√
32

2 = 3±2
√

2.
(They must be real, since A is symmetric!) They are distinct, so each eigenspace has dimension 1. It
suffices to find an eigenvector ~v1 for λ1 = 3 + 2

√
2, then any ~v2 ⊥ ~v1 must be an eigenvector for ~v2.

Now: to find ~v1, it suffices compute only the first row of A− λ1I, i.e. we do not need the grey stuff:

A− λ1I =

(
2− 2

√
2 2

2 −2− 2
√

2

)
= 2

(
1−
√

2 1

1 −1−
√

2

)
.

Note that the second row is proportional to the first one. (It must be: A−λ1I is singular.) We can take

for ~v1 arbitrary vector orthogonal to the first row, e.g. ~v1 =

(
−1

1−
√

2

)
; then take ~v2 =

(
1−
√

2
1

)
.

(b). Note that

B = 5M where M =

(
−1 −1

1 −1

)
.

Thus, the eigenvalues of B are λ = 5µ where µ are those of M , i.e. the roots of pM (µ) = (−1−µ)2+1.
These are µ1,2 = −1± i; note that they mutual conjugates, and the corresponding eigenvectors must
be mutual conjugates as well. For µ1 = −1 + i, we find

M − µ1I =

(
−1− (−1 + i) −1

∗ ∗

)
=

(
−i −1
∗ ∗

)
.

We can take ~v1 =

(
1
−i

)
as it is orthogonal to the first row, and its conjugate ~v2 =

(
1
i

)
for λ2.

Eigenvalue invariants. Recall that for a square matrix A, the determinant det(A) and the trace,

tr(A) :=
n∑
k=1

akk,

can be expressed in terms of the eigenvalues of A, namely det(A) =
∏n
k=1 λk and tr(A) =

∑n
k=1 λk.

In fact, det(A) and tr(A) are, up to a sign, just two coefficients of the characteristic polynomial pA,
and the whole polynomial—i.e. all its n coefficients—can be expressed in terms of eigenvalues only.
But even using just det(A) and tr(A), one might save a lot of calculations when finding eigenvalues.

Example 2.1.3 (HW3 #3). Find all eigenvalues of the following matrix

A =

15 4 −24
16 3 −24
12 4 −21

 .
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We will not compute all 3 coefficients of pA(λ). Instead, we first guess one eigenvalue λ1 = −1 by
noting that the first two rows of A are “almost identical.” We guess one more eigenvalue, λ2 = 3, by
comparing the 1st and 3rd rows. Finally, we find the trace, tr(A) = 15 + 3− 21 = −3, and the last
eigenvalue: λ3 = tr(A)−λ1−λ2 = −3 + 1− 3 = −5, and are done. Some variations are possible: for
example, we could use det(A) instead of tr(A) in the last step (it’s longer to compute, though). Or,
we could guess just one eigenvalue, then two others from det(A) and tr(A), by solving a system of 2
equations in 2 variables. (Even this method is much faster than computing and factorizing pA.)

2.2 First-order linear systems of DEs with variable coefficients

2.2.1 Matrix-functions

A matrix-function maps t ∈ R into a matrix M = M(t) ∈ Rn×m, possibly with m 6= n. Equivalently,
the entries of M(t) are usual functions. You encountered vector-functions (m = 1) in vector calculus:

~a(t) =

a1(t)...
an(t)

 .

Now we shall also need that of a square matrix:

A(t) =

a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)

 .

A matrix function A(t) is called continuous at t if all its entries aij(·), 1 6 i, j 6 n are continuous
at t. We can take derivatives and definite integrals of such functions. This is done entrywise: by
definition,

∂

∂t
A(t) :=

a
′
11(t) · · · a′1n(t)

...
. . .

...
a′n1(t) · · · a′nn(t)

 and

∫ β

α
A(t)dt :=


∫ β
α a11(t)dt · · ·

∫ β
α a1n(t)dt

...
. . .

...∫ β
α an1(t)dt · · ·

∫ β
α ann(t)dt

 .

For example, for A(t) =

(
0 1
t t2

)
we find

∂

∂t
A(t) =

(
0 1
1 2t

)
and

∫ 1

0
A(t)dt =

( ∫ 1
0 cdt

∫ 1
0 tdt∫ 1

0
t2

2 dt
∫ 1
0
t3

3 dt

)
=

(
0 1
1
2

1
3

)
.

Note that both these operations are linear: for any constants c1, c2 and functions A(t), B(t) ∈ Rn×n,

∂

∂t
(c1A(t) + c2B(t)) = c1

∂

∂t
A(t) + c2

∂

∂t
B(t),∫ β

α
(c1A(t) + c2B(t))dt = c1

∫ β

α
A(t)dt+ c2

∫ β

α
B(t)dt.
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2.2.2 Terminology

A general first-order linear system of DEs of dimension n (with variable coefficients) is of the form

~x′ = A(t)~x+ ~g(t) (2.6)

where A(t) ∈ Rn×n and g(t) ∈ Rn are some known matrix-functions, and ~x ∈ Rn is the unknown
(or dependent) vector. Note that this is an “ordinary” system: there is a single independent variable.
The system is called homogeneous if g(t) ≡ 0, and nohomogeneous otherwise. Let’s define solutions.

Definition 2. A (particular) solution of (3.11) on I ⊆ R is a vector-function ~x(t) satisfying (3.11)
on I.

Definition 3. The general solution of (3.11) is the set of all particular solutions.

Systems with constant coefficients, i.e. with A(t) = const, can be solved by linear algebra. We
shall learn how to it in this chapter. For variable coefficients, the methods are more advanced,
generalizing the method of integrating factors studied in the previous chapter. We study them later.

Example 2.2.1 (Foxes and rabbits). Foxes and rabbits live on an island. Their respective num-
bers xt(1), x2(t) at day t is described by the following linear system of DEs with constant coefficients:

x′1 = ax1 + bx2 − r,
x′2 = cx1 + dx2

with parameters c < 0 and a, b, d, r > 0. Interpret this system and write it in a matrix form.

The matrix form is

~x′ = Ax+ ~g with A =

(
a b
c d

)
, ~g =

(
−r
0

)
.

Interpretation: the increase of foxes at day t is the sum of two terms: the term proportional to the
current number of foxes, plus the one proportional to the number of rabbits. Additionally, r foxes
per day are removed from the island. The number of rabbits grows with the number of rabbits, but
also decreases proportionally to the number of foxes. Rabbits are neither removed nor imported.

For autonomous linear systems (i.e., with constant A,~g), we can adapt the notion of critical points.

Definition 4. A critical point for linear system of DEs ~x′ = A~x+ ~g with constant A and ~g is a
solution to the system of linear equations A~x = −~g.

For a 1st-order linear system of dimension n, the general solution will typically have n degrees
of freedom—arbitrary constants c1, ..., cn—instead of just one, as it was for first-order ODEs.
Equivalently, one can say that solution is defined up to an arbitrary vector of constants ~c ∈ Rn.
Intuitively, this is because such a system corresponds to an nth-order ODEs, to solve which one has
to “integrate n times.” Accordingly, an IVP for a linear system (3.11) has initial condition of the
form

~x(t0) = ~x0 (2.7)

for some initial value vector ~x0 ∈ Rn.
Next, we show how to convert nth-order linear ODE (3.2) into a first-order linear system of

DEs.1

1There is a method of conversion in the opposite direction as well. Try to come up with it after reading Section 3.3.3.
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2.2.3 Vectorization trick

Example 2.2.2. Convert a second-order ODE into an equivalent 1st-order linear system of DEs:

u′′ − u′ sin t+ 7u = et cos t+ 1. (2.8)

We rewrite the ODE in the standard form: u′′ = u′ sin t− 7u+ et cos t+ 1 and define variables

x1 = u,

x2 = u′.

In terms of these variables,

x′1 = u′ = x2,

x′2 = u′′ = u′ sin t− 7u+ et cos t+ 1 = −7x1 + x2 sin t+ et cos t+ 1.

where for x′2 we first plugged in the ODE. That is, the equivalent system reads(
x′1
x′2

)
=

(
0 1
−7 sin t

)(
x1
x2

)
+

(
0

et cos t+ 1

)
. (2.9)

The first row in the matrix is (0|1), and the entries of the last row are the coefficients of the ODE
in the standard form, in the reverse order.

Exercise 2.2.1. Verify that ODE (3.13) and system (3.14) are indeed equivalent, in the following
sense:

(a) If u(t) satisfies (3.13), then ~x(t) =

(
u(t)
u′(t)

)
satisfies (3.14).

(b) Conversely, for any solution ~x(t) =

(
x1(t)
x2(t)

)
of (3.14), the first component x1(t) satis-

fies (3.13).

General method. We now explain the general method for nth-order ODE in a standard form:

u(n) = a1(t)u
(n−1) + · · ·+ an−1(t)u

′ + an(t)u+ b(t).

We proceed as follows:

x1 = u

x2 = u′

...

xn−1 = u(n−2)

xn = u(n−1).

=⇒

x′1 = u′ = x2

x′2 = u′′ = x3
...

x′n−1 = u(n−1) = xn

x′n = u(n) = an(t)x1 + an−1(t)x2 + · · ·+ a1(t)xn + b(t).

27



As the result, we obtain the system ~x′ = A(t)~x+ ~g(t) with

A(t) =


0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1

an(t) · · · · · · a2(t) a1(t)

 and ~g(t) =


0
...
...
0
b(t)

 .

Here ~g(t) has zeroes in the first n− 1 rows and b(t) in the last row. In the first n− 1 rows of A(t), 1
moves from the 2nd to the last position; its last row has the ODE coefficients in the reverse order.

2.2.4 Existence and uniqueness of solutions in linear IVPs

We give a generalization of Theorem 1 (IVP with a 1st-order linear ODE) from the previous chapter.

Theorem 2.2.1. Assume that A(·) ∈ Rn×n and ~g(·) ∈ Rn are continuous in some interval I = (α, β)
containing t0. Then the IVP ~x′ = A(t)~x+ ~g(t), ~x(t0) = ~x0 has a unique solution for any ~x0 ∈ Rn.

We omit the proof. Conceptually, it is similar to that of Theorem 1, but uses vector calculus.
The theorem might also be used for n-order ODEs, by first converting them to an equivalent system.

Example 2.2.3. Identify the largest interval on which a solution exists and is unique, for the IVP

(t− 2)u′′ + 3u = t, u(0) = 0, u′(0) = 1.

Dividing by t− 2, we put equation in the standard form:

u′′ = − 3

t− 2
u+

t

t− 2
.

Then we obtain an equivalent system:

~x′ =

(
0 1
− 3
t−2 0

)
~x+

(
0
t
t−2

)
.

Here both A(t) and ~g(t) are continuous on (−∞, 2) and (2,+∞). The point t0 belongs to the first
interval, so the answer is (−∞, 2) by Theorem 3.3.2.

In fact, we do not even have to convert an ODE to the system: clearly, the equivalent condition
for ODE is that all coefficient functions a1(t), ..., an(t) and b(t) are continuous on I = (α, β) 3 t0.
Note also that it might be the intervals of continuity for some or all of these functions are distinct,
not the same as in the previous example. Then we take all possible intersections of these intervals.

Example 2.2.4. Identify the largest interval where the following IVP has a unique solution:

u′′ +
1

t− 1
u =

t

t− 3
, u(2) = 0, u′(2) = 1.

The coefficient a1(t) ≡ 0 of u′ is continuous everywhere; a2(t) = − 1
t−1 is continuous on (−∞, 1)∪

(1,+∞); finally, b(t) = t
t−3 is continuous on (−∞, 3) ∪ (3,+∞). Hence, we have 3 candidate

intervals (−∞, 1), (1, 3), (3,+∞). The second interval contains t0 = 2, thus is the one we seek.
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2.2.5 Linear independence of functions, Wronskian, fundamental set of solu-
tions

Linear independence of functions. Given n functions u1, ..., un on some interval I ⊆ R, we
call them linearly dependent if there exist a tuple of constants c1, ..., cn, not all zeroes, such that

c1u1(t) + · · ·+ cnun(t) = 0 ∀t ∈ I.

In other words, u1, ..., un are dependent (on I) if some nontrivial linear combination of them is
identically zero on I. Otherwise, u1, ..., un are linearly independent on I; equivalently, any nontrivial
combination c1u1(t)+ · · ·+ cn(t) is nonzero in at least some t ∈ I. To make sense of these definitions,
one might view functions I → R as vectors with continuous index t ∈ I; then the identical zero on I
is the analogue of the zero vector.2

Example 2.2.5. Functions t, t2 are independent on R. Indeed, assume that there are c1, c2 ∈ R
such that c1t+ c2t

2 ≡ 0 for all t ∈ R. Plugging in t1 = 1 and t2 = 2 we get a homogeneous linear
system

c1 + c2 = 0,

c1 + 4c2 = 0

with a nonsingular matrix, hence with a unique solution c1 = c2 = 0. Thus, t, t2 are independent.

One can show independence for the sequence of monomials {1, t, t2, ...}, exponentials {eλt, e2λt, ...},
trigonometric functions {cos(ωt), cos(2ωt), ...} or {sin(ωt) sin(2ωt), ...}. This goes beyond our course.

Example 2.2.6. cos2(t) and sin2(t)− 1 are dependent (on any I ⊆ R) since cos2(t) + sin2(t)− 1 ≡
0.

Wronskian. Let u1, ..., un be n− 1 times differentiable on I. We can construct the square matrix

M(t) =


u1(t) · · · un(t)
u′1(t) · · · u′n(t)

...

u
(n−1)
1 (t) · · · u

(n−1)
n (t)

 ∈ Rn×n.
Its determinant W (t) = det(M(t)), as a function of t ∈ I, is called the Wronskian of u1, ..., un (at t).

Example 2.2.7. The Wronskian of {t, t2} is W (t) =

∣∣∣∣t t2

1 2t

∣∣∣∣ = t2. Note that W (t) = 0 only at t = 0.

Example 2.2.8. For {cos2(t), sin2(t)− 1}, the Wronskian is W (t) ≡ 0 on R. Indeed,

W (t) =

∣∣∣∣ cos2(t) sin2(t)− 1
−2 cos(t) sin(t) 2 sin(t) cos(t)

∣∣∣∣ = 2 sin(t) cos3(t) + 2 sin3(t) cos(t)− 2 sin(t) cos(t)

= 2 sin(t) cos(t) [cos2(t) + sin2(t)− 1] ≡ 0.

The Wroskian gives a necessary condition of dependence.

2This abides the usual definition of linear independence, in the infinite-dimensional vector space of functions on I.

29



Theorem 2.2.2. If u1, u2, ..., un are linearly dependent on I, then W (t) ≡ 0 for all t ∈ I

Proof. The derivative of a linear combination is the same linear combination of the derivatives. So

if c1u1(t) + · · ·+ cnun(t) ≡ 0 on I, with c1, ..., cn ∈ R not all 0, then c1u
(k)
1 (t) + · · ·+ cnu

(k)
n (t) ≡ 0

on I. That is, the columns of M(t) are linearly dependent for all t ∈ I. Thus, W (t) ≡ 0 on I.

Theorem 3.3.3 allows to conclude that u1, ..., un are independent on I by finding some t0 ∈ I such
that W (t0) 6= 0. E.g. t, t2 are independent on any open interval I ∈ R as follows from Example 3.3.7.
The proof also shows why W (t) ≡ 0 is necessary for linear dependence, but might be insufficient.
Indeed, the coefficients of a vanishing linear combination of the columns of M(t) might depend on t,
so there might not be any constants c1, ..., cn that “work” for all t ∈ I simultaneously. However, the
condition actually becomes sufficient if u1, ..., un are analytic (infinitely many times differentiable).

Theorem 2.2.3 (Bôcher). If u1, u2, ..., un are analytic and W ≡ 0 on I, then u1, ..., un are depen-
dent.

In this class, we only deal with functions analytic on their domains, so W ≡ 0 is a criterion.

Fundamental set of solutions in ODEs. If the coefficients a1, ..., an of a homogeneous ODE

u(n) + a1(t)u
(n−1) + · · ·+ an−1(t)u

′ + an(t)u = 0 (2.10)

are continuous on I, then corresponding IVP with t0 ∈ I has a unique solution. Yet, to find this
solution we first have to obtain the general solution of the ODE. How do we know when we have it?

The set of solutions to a homogeneous linear ODE is a vector space: if u(t) and v(t) are
solutions, then their linear combination αu(t) + βv(t) with α, β ∈ R is also a solution.

This vector space is n-dimensional.3 Its arbitrary basis is called a fundamental set of solutions
to (3.15). Therefore:

The general solution of a homogeneous linear ODE of order n on I is of the form

n∑
k=1

ckuk(t), t ∈ I,

where u1, ..., un are linearly independent solutions (a fundamental set of solutions) on I.

If we found n linearly independent solutions, we are done. And if we have some candidates u1, ..., un,
their independence can be verified by Theorem 3.3.3: it suffices to find some t0 ∈ I such that W (t0) 6=
0.

Fundamental set of solutions for systems of DEs. Consider an equivalent to (3.15) system:

~x′ = A(t)~x. (2.11)

3We are not proving this.

30



If u1, ..., un are solutions to (3.15), then the vector-functions ~x1, ~x2, ..., ~xn with

~xk(t) =


u1(t)
u′1(t)

...

u
(n−1)
1 (t)


are solutions to (3.16), see Exercise 3.3.1. Therefore, M(t) is the matrix with columns ~x1(t), ..., ~xn(t),
and W (t) 6= 0 if and only if the vectors ~x1(t), ..., ~xn(t) are independent. This warrants a definition:

Definition 5. Vector-functions ~x1, ..., ~xn form a fundamental set of solutions to (3.16) on I if each
of them satisfies (3.16) on I, and

det(~x1(t0) · · · ~xn(t0)) 6= 0 for some t0 ∈ I.

As in the case of ODEs, we conclude:

The general solution of a homogeneous 1st-order linear system of dimension n on I is

n∑
k=1

ck~xk(t), t ∈ I,

where ~x1, ..., ~xk are linearly independent solutions (a fundamental set of solutions) on I.

Next, we learn how to find fundamental solutions for ODEs and systems with constant coefficients.
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2.3 First-order linear systems with constant coefficients

In this section, we study homogeneous linear systems of dimension n with constant coefficients:

~x′ = A~x, (2.12)

as well as n-order ODEs that are reduced to such systems via vectorization. As it turns out, solving
such systems reduces to linear algebra. We begin with a very simple but crucial observation:

If ~v is an eigenvector of A for eigenvalue λ ∈ R, then ~x(t) = eλt~v is a solution to (3.17).

To see why this is the case, and explain where eλt comes from, consider the trivial case n = 1.
The system is then x′ = λx, with 1× 1 matrix (λ). Solving it, we indeed get x(t) = ceλt for c ∈ R.

Now, in the general case A~x(t) = Aeλt~v = eλtA~v = λeλt~v. But also, if vk is the kth entry of ~v,

d

dt
~x(t) =

d

dt

e
λtv1
...

eλtvn

 =

λe
λtv1
...

λeλtvn

 = λeλt~v. (2.13)

We are done.

2.3.1 Real and distinct eigenvalues

Consider the case where A has n real eigenvalues λ1 6= ... 6= λn. In this case, the n corresponding
(real) eigenvectors ~v1, ..., ~vn are linearly independent. This gives n particular solutions to (3.17):

~x1(t) = eλ1t~v1, ..., ~xn(t) = eλnt~vn.

It remains to verify that this is a fundamental set of solutions, by examining the determinant:∣∣~x1(t) · · · ~xn(t)
∣∣ =

∣∣eλ1t~v1 · · · eλ1t~v1
∣∣ = eλ1t · · · eλnt

∣∣~v1 · · · ~vn
∣∣ 6= 0.

Here we used that det(A) is linear in each column of A, then that the exponentials are positive and
the vectors v1, ..., ~vn are linearly independent. Our result can be summarized as follows

Assume all eigenvalues of A are real and distinct, with respective eigenvectors ~v1, ..., ~vn.
Then the general solution of (3.17) is

~x(t) =
n∑
k=1

cke
λkt~vk. (2.14)

Solving IVPs

Let us outline the process of solving IVP for (3.17) with initial condition ~x(t0) = ~x0.

(i) Find the general solution (3.19) by finding the eigenvalues and corresponding eigenvectors
of A.

(ii) Form an n × n linear system in variables c1, ..., cn by plugging the condition ~x(t0) = ~x0
in (3.19).
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Figure 2.1: Component plot for the IVP solution in Example 3.4.1.

(iii) Identify c1, ..., cn by solving this system. Solution is guaranteed to be unique.

Uniqueness is guaranteed since the matrix (~x1(t0) · · · ~xn(t0)) of the linear system in (ii) is nonsingular.

Example 2.3.1. Solve the IVP and sketch the component plots:

~x′ =

(
4 0
−1 2

)
~x, ~x(ln(2)) =

(
4
6

)
.

We find pA(λ) = (4 − λ)(2 − λ), so the eigenvalues are λ1 = 4, λ2 = 2. Since λ1, λ2 ∈ R
with λ1 6= λ2, the corresponding eigenvectors ~v1, ~v2 are real and independent. Now,

A− λ1I =

(
0 0
−1 −2

)
=⇒ ~v1 =

(
2
−1

)
=⇒ ~x1(t) = e4t

(
2
−1

)
;

A− λ2I =

(
2 0
−1 0

)
=⇒ ~v2 =

(
0
1

)
=⇒ ~x2(t) = e2t

(
0
1

)
.

We now find the unknown constants c1, c2 from the linear system(
2e4t0 0
−e4t0 e2t0

)(
c1
c2

)
= ~x0, that is

(
32 0
−16 4

)(
c1
c2

)
=

(
32
0

)
.

We find c1 = 1, c2 = 4, and the IVP solution is ~x(t) = ~x1(t) + 4~x2(t) =

(
2e4t

−e4t + 4e2t

)
. See Fig. 3.2.

Note that A might be singular, i.e. with 0 as one of the eigenvalues; the theory remains valid.

Example 2.3.2 (Compartment model). The levels of liquid in two connected tanks (Fig. 3.3) at
time t satisfy

~x′ =

(
−k k
k −k

)
~x
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Compartment Model

A tank is divided into two cells. Each cell is filled with a fluid, and small
opening allows the fluid to flow freely between the cells.

Assume: height of fluid in a cell changes at a rate proportional to the
difference between fluid height in that cell and the fluid height in the
other cell.
Questions:

1. What happens to the system after a long period of time?

2. Construct a linear system for the fluid level heights.

3. Solve the linear system.

4. Determine whether the solution is unique.

5. Sketch component plots and a phase portrait of the system.

Section 3.3 Slide 3

Figure 2.2: Compartment model.
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Figure 2.3: Component plot for the IVP solution in Example 3.4.2.

where k > 0 is a parameter depending on the liquid Solve the IVP with ~x(0) =

(
2
1

)
and plot the

component plots for the solution. Can you guess, without computation, the value of ~x(t) for large t?

First, we guess that the two levels should match as t→ +∞, as the equilibria are (c, c)> for c ∈ R.
In fact, some intuition from a high-school physics class—the liquid pressure formula ρgh—might
hint that the asymptotic level c is the average of the initial levels in the tanks, i.e. c = 3

2 . We now
solve the IVP. Note that we can factor out k from the matrix, i.e. A = kB with

B =

(
−1 1

1 −1

)
.

The eigenvalues of B are found to be µ1 = 0, µ2 = −2, so those of A are λ1 = 0, λ2 = −2k. For ~λ1 = 0,

we take ~v1 =
(
1 1

)>
. Since B is symmetric, ~v2 is orthogonal to ~v1, and we take ~v2 =

(
1 −1

)>
.

The initial conditions amount to c1 + c2 = 2 and c1 − c2 = 1, whence we find c1 = 3
2 , c2 = 1

2 , and

~x(t) =
1

2

(
3 + e−2kt

3− e−2kt
)
.
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Our guess is correct, and convergence is exponentially fast. See Fig. 3.4.

Phase portraits for two real eigenvalues λ1 6= λ2 6= 0

Note that when A is nonsignular, 0 is not an eigenvalue, and the only critical point is (0; 0). Its type
is defined by the signs of λ1 and λ2. An equilibrium is asymptotically stable if both eigenvalues are
negative, and unstable otherwise. In this section, we assume that λ1 > λ2 without loss of generality.

• There is a Wolfram notebook that allows to sketch phase portraits in two-dimensional systems!

Nodal source (λ1 > λ2 > 0). Unstable equilibrium: trajectories emanate from the origin (see
Example 3.4.1). To sketch the phase portrait, we start by plotting the eigenspaces, i.e. straight lines
along ~v1 and ~v2, and we put arrows in the direction from the origin. Any other trajectory emanates
from the origin to infinity, remaining in its sector. It gets parallel to ~v1 far from the origin and
tangent to ~v2 in the origin. In Fig. 3.5, we sketch the phase portrait of the system in Example 3.4.1.

Nodal sink (λ2 < λ1 < 0). This is an asymptotically stable equilibrium: trajectories go towards
the origin. Note that we can obtain such an equilibrium from a nodal sink by negating A, see Fig. 3.5,
which corresponds to time reversal. The arrows on the straight lines point towards the origin. Other
trajectories go to the origin, getting parallel to ~v2 far from the origin and tangent to ~v1 in the origin.

Saddle (λ1 > 0 > λ2). This is an unstable equilibrium. The arrows point outwards along ~v1 and
towards the origin along ~v2. All other trajectories are U -shaped: they approach the origin up to a
certain point, then run away from it. Far away from the origin they get parallel to ~v1 or ~v2, and the
arrows conform to those on the straight lines. In Fig. 3.5, we sketch the phase portrait for ~x′ = A~x
with eigenvalues λ1 = 8 and λ2 = −2, and respective eigenvectors ~v1 = (−6; 1) and ~v2 = (4; 1).

2.3.2 Complex eigenvalues (without repetition)

Complex algebra. Euler’s formula extends the exponential to imaginary numbers: by definition,

eiθ = cos(θ) + i sin(θ) ∀θ ∈ R.

Then one can extend ez to z = x+ iy ∈ C: by definition, ez := exeiy = ex cos(y) + iex sin(y). This is
a very natural generalization as it preserves the key algebraic property of exponentials, namely that

ez1+z2 = ez1ez2 for all z1, z2 ∈ C.

(This can be checked by Euler’s formula and the formulas for cos(α± β) and sin(α± β).) Moreover,
we can define the derivative of ϕ : R → C by differentiating Reϕ and Imϕ separately. Then, for
example, (eiωt)′ = (cos(ωt) + i sin(ωt))′ = −ω sin(ωt) + iω cos(ωt) = iωeiωt. More generally,

(eλt)′ = λeλt for all λ ∈ C, (2.15)

so the key differential property of the exponential function is also preserved. To summarize, “the
usual algebra and analysis” still work for t 7→ eλt with λ ∈ C, plus we can exploit Euler’s formula.
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Figure 2.4: Left: nodal source (Example 3.4.1). In a nodal sink, the arrows are flipped. Right:
saddle.

Case n = 2

We now consider the case of two complex eigenvalues in dimension n = 2. Recall from Section 2.1
that complex eigenvalues (as well as eigenvectors) of a real matrix come in mutually conjugate pairs:

λ1 = µ+ iω, ~v1 = ~a+ i~b,

λ2 = µ− iω, ~v2 = ~a− i~b,
(2.16)

for some µ, ω ∈ R; ~a,~b ∈ Rn. This holds for all n, but in the case n = 2 we have no other eigenvalues,
and we should be able to obtain a fundamental set of real solutions for (3.17). We prove the
following:

Proposition 2.3.1. System (3.17) with 2 complex eigenvalues (3.21) has a fundamental set of
solutions

~u(t) = eµt cos(ωt)~a− eµt sin(ωt)~b,

~v(t) = eµt sin(ωt)~a+ eµt cos(ωt)~b.

As such, the general solution is ~x(t) = α~u(t) + β~v(t) for α, β ∈ R.

Example 2.3.3. Solve the IVP

~x′ =

(
−1 2
−1 −3

)
~x, ~x(π) = e−2π

(
1
−1

)
.

Here pA(λ) = λ2 + 4λ+ 5, whence λ1,2 = −2± i. The respective eigenvectors can be computed
as in (2.1.2), part (b); we will get

~v1,2 =

(
2
−1

)
± i
(

0
1

)
.
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In terms of (3.21), µ = −2, ω = 1, and we find the general solution

~x(t) = e−2t cos t

(
2c1

c2 − c1

)
+ e−2t sin t

(
2c2

−c1 − c2

)
∀c1, c2 ∈ R.

From the initial condition we get

(
−2c1
c1 − c2

)
=

(
1
−1

)
, whence c1 = −1

2 , c2 = 1
2 , and the solution is

~x(t) = e−2t cos t

(
−1
1

)
+ e−2t sin t

(
1
0

)
.

Proof of Proposition 3.4.1. By (3.20), y(t) = eλt satisfies a homogeneous ODE y′ − λy = 0
with complex coefficient λ ∈ C. Therefore, repeating (3.18), we verify that

~x1(t) = eλ1t~v1, ~x2(t) = eλ2t~v2.

are solutions to (3.17). However, they are complex, and we need real solutions. Now, we check that

~x1(t) = ~u(t) + i~v(t),

~x2(t) = ~u(t)− i~v(t),

that is ~u(t) = Re~x1(t) and ~v(t) = Im~x1(t). Indeed, by Euler’s formula

~x1(t) = eµt[cos(ωt) + i sin(ωt)](~a+ i~b) = eµt[cos(ωt)~a− sin(ωt)~b+ i sin(ωt)~a+ i cos(ωt)~b]

= ~u(t) + i~v(t),

similarly for ~x2(t). This explains where ~u(t), ~v(t) come from, and also shows that they are solutions:

d

dt
~u(t) =

d

dt
Re(~x1(t))

(i)
= Re

(
d

dt
~x1(t)

)
(ii)
= Re(A~x1(t))

(ii)
= ARe(~x1(t)) = A~u(t).

Make sure you understand why (i)–(iii) hold. Finally, to verify that ~u,~v are independent, note that

(
~u ~v

)
= zeµt

(
~a ~b
)( cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
where the rotation matrix in the right-hand side has determinant 1. Hence det

(
~u ~v

)
= e2µt det

(
~a ~b
)
,

where e2µt > 0 since µ ∈ R. But if we assume that det
(
~a ~b

)
= 0, then ~v1, ~v2 must also be

dependent due to (3.21), and this contradicts their linear independence (over C) as they correspond
to λ1 6= λ2.

2.3.3 Case n > 2.

Here we do not consider the case of more than 2 complex eigenvalues in detail. In a nutshell, any
pair of simple complex eigenvalues (i.e. with algebraic multiplicity 1) gives a pair of solutions as
in Proposition 3.4.1. If n > 2 and a pair has multiplicity k > 1, then one can find solutions by
combining Proposition 3.4.1 with the Jordan decomposition trick for repeated eigenvalues, to be
presented later.
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Figure 2.5: Phase portrait for ~x′ = A~x where A has eigenvalues 3± 2i, so (0; 0) is a spiral source.

Phase portraits for two complex eigenvalues

When the eigenvalues are complex, there are three cases, depending on the sign of their real part µ.

Spiral source (µ > 0) – Spiral sink (µ < 0). All trajectories are spirals emanating from
(resp. going to) the origin for a source (resp. sink); source is unstable, and sink is stable. (Do you
understand why?) In Fig. 3.5, we sketch the phase portrait of a system with a spiral source, and
in Example 3.4.3 the equilibrium is a spiral sink. When sketching a spiral source/sink, the only
dilemma is to guess the direction of rotation: clockwise or counterclockwise. This can be done by
trying a couple of “simple” test values for ~x, e.g. (1; 0) and (0; 1), computing the corresponding
values of the flow ~x′, and checking if they are consistent with the tentative direction of rotation.
For the system

~x′ =

(
4 5
−1 2

)
~x

in Figure 3.6, the eigenvalues are 3 ± 2i, so we have a spiral source. From (1; 0) we move in the
direction (4;−1), and from (0; 1) in the direction (5; 2); this is consistent with the clockwise rotation.

Circular case (µ = 0). If µ = 0, i.e. both eigenvalues are imaginary, all trajectories are ellipses,
and the direction of rotation can be determined by the same method as for spiral source/sink. In
fact this is a “neutral” equilibrium: it does not attract nor repell.
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2.3.4 Repeated eigenvalues

We now consider the general situation of an n-dimensional system with eigenvalues λ1, ..., λn that
might repeat. The following example demonstrates that this is a practically relevant situation.

Example 2.3.4 (Reversive motion). The motion of a point in the plane is described by the equation

x′ = −x+ ky,

y′ = −y,

where k ∈ R is a parameter, with initial condition ~r(0) = (1; 2). Find its position ~r(t) at any t ∈ R.

Let us deal with this example “ad-hoc,” then study the general case. Our equation is ~r′ = Ar with

A =

(
−1 k
0 −1

)
.

The matrix is upper-triangular, and diagonal when k = 0. For k 6= 0, the variables x, y are coupled.

Diagonal case: k = 0. Here A = −I, with eigenvalues λ1,2 = −1. Moreover, A− (−1)I = 0, so
any ~v ∈ R2 is an eigenvector; in particular, ~v1 = (1; 0) and ~v2 = (0; 1) is a pair of independent ones.
On the other hand, in our system with k = 0, each of the two equations only concerns its own
variable x or y, so these variables do not interact; thus, we can solve the two equations separately.
The corresponding general solution is given by x(t) = c1e

−t and y(t) = c2e
−t for c1, c2 ∈ R, that is

~r(t) = c1e
−t
(

1
0

)
+ c2e

−t
(

0
1

)
.

Nondiagonal case: k 6= 0. Note that the eigenvalues of A are the same as before: λ1,2 = −1.
(This is, in fact, a general result for upper- and lower-triangular matrices.) However, the nullspace of

A+ I =

(
0 k
0 0

)
has dimension 1; namely, it is the span of ~v = (1; 0). On the other hand, we can solve our system by
substitution. Namely, we first solve the second equation that only concerns y; its general solution is
y(t) = ce−t. Plugging y(t) in the first equation, we get a parameterized first-order ODE in x:

x′ + x = cke−t,

that can be solved via the integrating factor method. Doing so, we get x(t) = (c1 + ckt)e−t.
Introducing ~w1 = (0; 1

k ) and c2 = ck, we express the answer in the vector form:

~r(t) = e−t
(
c1 + ckt

c

)
= c1e

−t~v + c2e
−t (t~v + ~w) .

We also note that eigenvalue λ = −1, respective eigenvector ~v, and the vector ~w satisfy the relation

(A− λ)~w = ~v.

From linear algebra we recall that ~w is called (the first) generalized eigenvector of eigenvalue λ.
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Generalized eigenvectors. Before we proceed further to the general theorem, let’s recall a
result from linear algebra (see also the beginning of this chapter). Assume A is a square matrix of
dimension n, and its characteristic polynomial pA has some root λ ∈ C with multiplicity m 6 n.
Then m(λ) is called the algebraic multiplicity of eigenvalue λ, whereas s(λ) = dim(Null(A− λI)) is
the geometric multiplicity of eigenvalue λ. For any eigenvalue λ, it holds that 1 6 s(λ) 6 m(λ) 6 n,
and the sum of algebraic multiplicities over all (distinct) eigenvalues of A is n. If it happens, for A at
hand, that s(λ) = m(λ), then the subspace Null(A− λI) has a basic of eigenvectors, and otherwise
it’s not the case; these two situations corresponded, respectively, to k = 0 and k = 1 in the above
example. We now recall Jordan’s theorem from linear algebra – first, for the case of s(λ) = 1.

Theorem 2.3.1. Let λ be an eigenvalue of A with algebraic multiplicity m > 2 and single independent
eigenvector ~v. There exist m independent vectors ~w0[= ~v], ~w1, ..., ~wm−1 that form the Jordan chain:

(A− λI)~w0 = 0,

(A− λI)~w1 = ~w0,

...

(A− λI)~wm−1 = ~wm−2.

Moreover, the chain cannot be continued: the system (A− λI)~u = ~wm−1 has no solutions in ~u ∈ Cn.

In the previous example with k 6= 0, for λ = −1 we have m = 2 and s = 1; the Jordan chain is
comprised of ~w0 = ~v = (1; 0) and ~w1 = ~w = (0; 1

k ), and there exists no ~u such that (A− λI)~u = ~w1.
We can construct a Jordan chain for λ with m > 2 and s = 1 as follows.

1. Find some eigenvector ~v by solving (A− λI)~v = 0, and let ~w0 = ~v

2. Repeat the following for k ∈ {1, ...,m− 1}: given ~wk−1, find ~wk by solving (A− λI)~u = ~wk−1.

In fact, it is guaranteed that the solution in step 2 is unique for each k ∈ {1, ...,m− 1}; in particular,
we can rescale the whole chain by the same scalar, but not its vectors separately from each other.

Remark 2.3.1. We briefly discuss the case of 1 < s < m (which we shall not encounter in this
class). In this case, there are s independent eigenvectors ~v1, ..., ~vs and s respective Jordan chains,
each starting from its own eigenvector. The sum of lengths of these chains is m. To find these
chains, we can run the above process for each chain incrementally, cutting it when we cannot find
the next link.

Returning to systems of DEs, we have the following general result.

Theorem 2.3.2. Let A ∈ Cn×n have an eigenvalue λ with algebraic multiplicity m and geometric
multiplicity s, with the corresponding Jordan chains(

~w
(1)
0 , ..., ~w

(1)
m1−1

)
; · · · ;

(
~w
(s)
0 , ..., ~w

(s)
m1−1

)
.

Then ~x ′ = A~x has m solutions of the form

eλt ~w
(j)
0 , eλt

(
t~w

(j)
0 + ~w

(j)
1

)
, ..., eλt

(mj∑
k=1

tmj−k ~w
(j)
k−1

)
for j ∈ {1, ..., s}.

The resulting n solutions (for all eigenvalues) are independent, so give a fundamental set of solutions.
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Proof. We only consider the simplest case to highlight the mechanism; the general case can be
handled by induction. Namely, assume m = 2 and s = 1, and let ~v, ~w be the Jordan chain of λ. We
already know that ~x0(t) = eλt~v is a solution of ~x′ = A~x, so it remains to verify that ~x1(t) = eλt(t~v+ ~w)
is a solution as well, and that the two are independent. For the first claim, we observe that

A~x1(t) = eλt(tA~v +A~w) = eλt(λt~v + λ~w + ~v) = ~x′(t).

As for the second claim, it follows from the independence of ~v and ~w. Indeed, the Wronskian reads

W (t) =
∣∣~x0(t) ~x1(t)

∣∣ =
∣∣eλt~v eλt(t~v + ~w)

∣∣ = e2λt
∣∣~v t~v + ~w

∣∣ = e2λt
∣∣~v ~w

∣∣ 6= 0.
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Chapter 3

Higher-order linear equations

Preliminaries

In this chapter, we shall mostly focus on linear ODEs of second order

y′′ + a1y
′ + a2y = f(t), t ∈ I (3.1)

with constant or variable coefficients, and, to some extent, on linear ODEs of arbitrary order n > 2,

y(n) + a1y
(n−1) + ...+ an−1y

′ + any = f(t), t ∈ I. (3.2)

We shall pay special attention to harmonic oscillator, which is an important subclass of second-order
systems that appears in several areas of classical physics; in particular, as a spring-mass system
presented in the next section. Note that any linear ODE (3.2) with constant coefficients can solve
via vectorization, i.e. by reducing it to a second order system and solving that system; this is how
we proceeded in the previous chapter. Here, we shall instead propose another method, avoiding
vectorization—and any linear-algebraic calculations, seemingly—and solving (3.2) directly. In fact,
with some linear algebra (again!), one can show that the two methods are equivalent in a suitable
sense; I will not endeavor to do it in these lectures. On the other hand, the method to be presented
admits an interpretation in terms of linear operators and their eigenfunctions, that we shall discuss.

3.1 Spring-mass system

In spring-mass system, a mass of m grams1 is attached to a vertical spring whose other end is
attached to a horizontal surface (see Fig. 3.1), and whose stiffness coefficient is k. (The unit of k is
Newton-per-meter, or N/m, where Newton is the unit of force. Note that 1N = 1kg·m

s2
= 105 g·cm

s2
.)

Assuming that air resistance is negligible, and the spring is “ideal” (long and perfectly elastic), what
forces are acting on the mass?

• Gravitational force Fgrv = mg, where g is the free fall acceleration; directed downwards.

• Stretching force Fstr that “desires” to put the system back to the equilibrium position.

• Possibly, external force Fext applied to the mass.

1We shall use metric units – get used to it.
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Figure 3.1: Spring-mass system.

Let `0 be the stretch of the spring by gravity alone, in equilibrium position. By Hook’s law, one has

k`0 = mg. (3.3)

Since g = 9.8 N/m is known, this allows to find any one of the three quantities k, `0,m knowing the
other two. Now, let y be the vertical position of the mass, measured downwards and in such a way
that the equilibrium position corresponds to y = 0. (That is, y+ `0 is the excess length of the spring
compared to its length when undeformed (i.e. if m = 0), negative if the spring is squeezed.) By
Hook’s law, the stretching force is Fstr = −k(y + `0). On the other hand, by the 2nd Newton’s law,

my′′ = Fgrv + Fstr + Fext.

Plugging in the equilibrium equation and the value of Fstr, we get my′′ = k`0 − k(y + `0) + Fext, or

my′′ + ky = Fext.

Dividing over m and defining ω2
0 := k

m and f = 1
mFext, we arrive at the standardized equation:

y′′ + ω2
0y = f. (3.4)

This ODE has a special name: equation of a harmonic oscillator with natural frequency ω0 and
forcing function f . Note that in the homogeneous system (f = 0), the general real solution writes as

y(t) = c1 cos(ω0t) + c2 sin(ω0t),

which explains the name chosen for ω0. If f is not identically zero, we say that the spring-mass
system (or harmonic oscillator) is forced; otherwise it is unforced. Finally, we can introduce damping,
adding a force Fdmp = −γy′ where γ > 0 is the viscosity coefficient of the medium. Thus, equation

y′′ + γy′ + ω2
0y = f. (3.5)

describes an oscillator with damping; if γ = 0, we say that the oscillator is undamped. We shall revisit
equations (3.4)–(3.5) later, after discussing general second-order ODEs with constant coefficients.

Example 3.1.1. A mass weighing 2 Newtons is attached to a spring and stretches it by 4 cm. The
spring is released from rest at a point that is 3 cm above the equilibrium point. Write down the IVP
describing the vertical position of the mass at a given time. The free fall acceleration is 9.8m

s2
≈ 10m

s2
.
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First, we convert the units. E.g., let’s switch to meters and kilograms. Then `0 = 0.04 for
the initial stretch (in meters), and mg = 2 for the weight (in Newtons; recall that N = kg·m

s2
).

Whence m = 2
9.8 = 0.2 kg, and from the equilibrium condition k = mg

`0
= 2

0.04 = 50 N/m.

Thus ω2
0 = k

m = 50
0.2 = 250 s−2. Since there is no damping and no forcing, we write down the IVP:

y′′ + 250y = 0, y(0) = −0.03, y′(0) = 0.

Its solution y(t) is the vertical position counted downwards relatively to the equilibrium, in meters.

Other harmonic oscillators. In addition to the spring-mass system, there are other physical
systems whose behavior is modeled by the harmonic oscillator equation. Two classical examples are:

(a) pendulum for small displacement angles θ, such that the approximation θ ≈ sin θ can be used;

(b) LC-circuit – an electrical circuit that consists of an inductor and a capacitor.

We are not going to consider the physical aspects of any of these systems in this class. Instead, we
shall either be reasoning in terms of the abstract equation (3.4), or in terms of a spring-mass system
when aiming to highlight some aspect of mathematical modeling and/or use some physical intuition.

3.2 Theory recap: General linear ODEs

In the previous chapter, we have established some general properties of homogeneous linear ODEs,

y(n) + a1(t)y
(n−1) + ...+ an−1(t)y

′ + an(t)y = 0, t ∈ I, (3.6)

and IVPs associated to them. We need these results in this chapter, so we briefly summarize them.

Fundamental set of solutions. Assuming that the coefficients a1(t), ..., an(t) are continuous
on I, there exist n, and not more, linearly independent solutions y1(t), ..., yn(t) on I, and any
solution y(t) is their linear combination with constant coefficients: y(t) = c1y1(t) + ... + cnyn(t).
In fact, the set of all solutions of (3.6) is an n-dimensional subspace of the (infinite-dimensional)
space Cn(I) of n-times differentiable functions on I, and fundamental sets of solutions are just its
bases. E.g., both {cosω0t, sinω0t} and {cosω0t+ sinω0t, cosω0t− sinω0t} are fundamental sets
of solutions of (3.4) with f = 0 (provided that ω0 6= 0).

Testing independence via Wronskian. Given a set of n functions f1, ..., fn that are n − 1
times continuously differentiable on I, we can define the matrix-function

M(t) =


f1(t) · · · fn(t)
f ′1(t) · · · f ′n(t)

...
...

f
(n−1)
1 (t) · · · f

(n−1)
n (t)

 .

Its determinant W (t) is called the Wronskian of f1, ..., fn. If f1, ..., fn are linearly dependent on I,
then W ≡ 0 on I. Rephrasing this, to show that f1, ..., fn are linearly independent it suffices to
find t0 ∈ I such that W (t0) 6= 0. This test can be applied to a set of n solutions y1, ..., yn of an ODE
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to check that this set is a fundamental one. For example, two solutions {cosω0t, sinω0t} of (3.4)
with f = 0 and ω0 6= 0 indeed form a fundamental set on R, since their Wronskian does not vanish:

W (t) =

∣∣∣∣ cosω0t sinω0t
−ω0 sinω0t ω0 cosω0t

∣∣∣∣ = ω0

∣∣∣∣ cosω0t sinω0t
− sinω0t cosω0t

∣∣∣∣ = ω0 6= 0.

Existence and uniqueness of solutions in IVPs. Finally, recall that an IVP for equation (3.6)
with initial conditions y(t0) = s0, y

′(t0) = s1, ..., y
(n−1)(t0) = sn−1 has a unique solution,

provided that the coefficient functions a1, ..., an are continuous on I. More generally, this holds for
nonhomogeneous linear ODEs with some forcing function f , assuming that f is also contunous on I.

3.3 Homogeneous linear ODEs with constant coefficients

In this section, we derive the general solution for homogeneous equations with constant coefficients:

y(n) + a1y
(n−1) + ...+ an−1y

′ + any = 0. (3.7)

Definition 6. pa(λ) = λ(n) + a1λ
n−1 + ...+ an−1λ+ an is the characteristic polynomial of equa-

tion (3.7).

At this point, one might be confused with this terminology: we already have pA(λ) = det(A−λI),
the characteristic polynomial of both A ∈ Cn×n and the associated first-order linear system of DEs:

~x ′ = Ax. (3.8)

This perceived misnomer is “a feature rather than a bug,” as the next simple observation shows.

Proposition 3.3.1. If (3.8) is the equivalent first-order system for ODE (3.7), then pa(λ) =
(−1)npA(λ).

Proof. First note that for n = 1, the claim holds trivially. In the case n = 2,

pA(λ) =

∣∣∣∣−λ 1
−a2 −a1 − λ

∣∣∣∣ = λ2 + a1λ+ a2 = pa(λ).

The general case can be handled by induction. Recall that A is called the companion matrix of pa.
The lemma claims that for the companion matrix of pa, the characteristic polynomial is pa itself.

Another immediate observation is that the roots λ1, ..., λn ∈ C of pa(λ) generate solutions
of (3.7).

Proposition 3.3.2. If λ is a root of pa, then y(t) = eλt is a solution of (3.7). Moreover, solu-
tions {yj(t) = eλjt, j ∈ J} generated by a subset {λj , j ∈ J} of distinct roots are linearly independent.

For the proof, we define a special matrix that shall also be used later (and is useful in general).

Definition 7. The Vandermonde matrix corresponding to λ1, ..., λd ∈ C is a d× d matrix given by

Vd(λ1, ..., λd) =


1 · · · 1
λ1 · · · λd
...

...

λd−11 · · · λd−1d

 .
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Note that if there is a repetition among λ1, ..., λd, then the corresponding Vandermonde matrix
is singular. Moreover, it turns out that this is ”if and only if,” as the following result implies.

Lemma 3.3.1. For any λ1, ..., λd ∈ C, the determinant of the corresponding Vandermonde matrix
is

detVd(λ1, ..., λd) =
∏

16j<k6d

(λk − λj).

Proof. This can be shown by induction: we have detV2(λ1, λ2) = λ2 − λ1 for the base, and the
induction step can be carried out via the cofactor expansion. (Try it, this is a good exercise.)

We can now prove Proposition 3.3.2. Plugging y(n)(t) = λneλt in (3.7), we see that

y(n)(t) + a1y
(n−1)(t) + ...+ any(t) = eλtpa(λ) = 0

and verify the first claim. For the second claim, assume w.l.o.g. that J = {1, 2, ..., d} and note that∣∣∣∣∣∣∣∣∣
y1(t) · · · yd(t)
y′1(t) · · · y′d(t)

...
...

y
(d−1)
1 (t) · · · y

(d−1)
d (t)

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
eλ1t · · · eλ1t

λ1e
λ1t · · · λde

λdt

...
...

λd−11 eλ1t · · · λd−1d eλdt

∣∣∣∣∣∣∣∣∣ = eλ1t · · · eλdt detVd(λ1, ..., λd) 6= 0.

General solution in the case of distinct roots. If all characteristic roots λ1, ..., λn in (3.7)
are distinct, invoking Proposition 3.3.2 with d = n implies that the general (complex) solution
of (3.7) is

c1e
λ1t + ...+ cne

λnt (3.9)

with arbitrary (complex) constants c1, ..., cn. Moreover, if λ1, ..., λn ∈ R then (3.9) with c1, ..., cn ∈ R
is the general real solution. More generally, if µ+ iω is a root, its conjugate µ− iω is also a root,
and we replace the corresponding pair of terms in (3.9) with eµt(A cosωt + B sinωt) to get real
solutions.

3.3.1 Repeated roots

As in first-order systems, the case of repeated roots involves functions of the form tkeλt. To handle it
and prove the result to be stated next, it is it is convenient to use the formalism of linear operators.

Definition 8. A linear operator on a vector space of functions F is a linear transformation of that
space, i.e. Φ : F → F such that Φ[αf +βg] = αΦ[f ]+βΦ[g] for all f, g ∈ F and any constants2 α, β.

We denote the evaluation of a linear operator with brackets [·], rather than parentheses (·),
since Φ[f ] is itself a function that we might want to evaluate at some t; in such cases, we write Φ[f ](t).

2For mathematicians: F is a vector space over R (resp., over C), then the scalars α, β are real (resp., complex).
That is, α, β come from the same field over which F is a vector space.
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Linear ODEs with constant coefficients in terms of linear operators. An important
linear operator, that we denote ∆, corresponds to taking the derivative of f . Its powers ∆2,∆3, ...
corresponds to taking higher derivatives, and ∆0 = Id is the identity operator (mapping f to itself).
Now, we can rewrite (3.7) as Φ[y] = 0, where the linear operator Φ in the left-hand side is given by

Φ = ∆n +

n∑
k=1

ak∆
n−k = pa(∆).

As such, we obtain a geometric characterization of the solution set of (3.7) as the nullspace of Φ.

Theorem 3.3.1. Each root λ ∈ C with multiplicity m > 2 generates m solutions of (3.7) as follows:

eλt, teλt, ..., tm−1eλt. (3.10)

The resulting n solutions, for all roots (repeated or not), are independent, so form a fundamental set.

Proof. 1o. For the first claim, we have to check that if λ is a root of pa with multiplicity m > 2,
then teλt, ..., tm−1eλt are solutions of (3.7). To this end, observe that

Φ = pa(∆) = (∆− λ1Id) (∆− λ2Id) · · · (∆− λnId).

In this product, all factors commute, and ∆− λId is repeated m times. Thus, it suffices to verify
that for all k ∈ {1, ...,m− 1}, one has

(∆− λId)m[tkeλt] = 0.

It remains to observe that, since ∆[tkeλt] = ktk−1eλt+λtkeλt, it holds that (∆−λId)[tkeλt] = ktk−1eλt,
i.e. each application of (∆− λId) lowers the power of t by one. The first claim is proved.
2o. For the second claim, we only show the independence within the subset of solutions (3.10)
corresponding to a single one repeated root λ. Consider first the case m = 2 to get some intuition:

W (t) =

∣∣∣∣ eλt teλt

λeλt eλt

∣∣∣∣ = e2λt
∣∣∣∣1 t
λ 1

∣∣∣∣
The corresponding Wronskian, assuming m > 3 is

W (t) =

∣∣∣∣∣∣∣∣∣∣∣

eλt teλt t2eλt · · · tm−1eλt

λeλt eλt 2teλt · · · (m− 1)tm−2eλt

λ2eλt λeλt 2eλt · · · (m− 1)(m− 2)tm−3eλt

...
...

...
. . .

...
λm−1eλt λm−2eλt 2λm−3eλt · · · (m− 1)!eλt

∣∣∣∣∣∣∣∣∣∣∣
.

While this seems complicated (and it is), it suffices to find some t ∈ R for which W (t) 6= 0. Now,
observe that for t = 0 the matrix becomes is lower-triangular: indeed, each entry terms above the
main diagonal contain a monomial factor, and so vanishes at t = 0. Meanwhile, each diagonal entry
is eλt times a positive integer. As such, W (0) > 0.
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3.3.2 Terminology

A general first-order linear system of DEs of dimension n (with variable coefficients) is of the form

~x′ = A(t)~x+ ~g(t) (3.11)

where A(t) ∈ Rn×n and g(t) ∈ Rn are some known matrix-functions, and ~x ∈ Rn is the unknown
(or dependent) vector. Note that this is an “ordinary” system: there is a single independent variable.
The system is called homogeneous if g(t) ≡ 0, and nohomogeneous otherwise. Let’s define solutions.

Definition 9. A (particular) solution of (3.11) on I ⊆ R is a vector-function ~x(t) satisfying (3.11)
on I.

Definition 10. The general solution of (3.11) is the set of all particular solutions.

Systems with constant coefficients, i.e. with A(t) = const, can be solved by linear algebra. We
shall learn how to it in this chapter. For variable coefficients, the methods are more advanced,
generalizing the method of integrating factors studied in the previous chapter. We study them later.

Example 3.3.1 (Foxes and rabbits). Foxes and rabbits live on an island. Their respective num-
bers xt(1), x2(t) at day t is described by the following linear system of DEs with constant coefficients:

x′1 = ax1 + bx2 − r,
x′2 = cx1 + dx2

with parameters c < 0 and a, b, d, r > 0. Interpret this system and write it in a matrix form.

The matrix form is

~x′ = Ax+ ~g with A =

(
a b
c d

)
, ~g =

(
−r
0

)
.

Interpretation: the increase of foxes at day t is the sum of two terms: the term proportional to the
current number of foxes, plus the one proportional to the number of rabbits. Additionally, r foxes
per day are removed from the island. The number of rabbits grows with the number of rabbits, but
also decreases proportionally to the number of foxes. Rabbits are neither removed nor imported.

For autonomous linear systems (i.e., with constant A,~g), we can adapt the notion of critical points.

Definition 11. A critical point for linear system of DEs ~x′ = A~x+ ~g with constant A and ~g is a
solution to the system of linear equations A~x = −~g.

For a 1st-order linear system of dimension n, the general solution will typically have n degrees
of freedom—arbitrary constants c1, ..., cn—instead of just one, as it was for first-order ODEs.
Equivalently, one can say that solution is defined up to an arbitrary vector of constants ~c ∈ Rn.
Intuitively, this is because such a system corresponds to an nth-order ODEs, to solve which one has
to “integrate n times.” Accordingly, an IVP for a linear system (3.11) has initial condition of the
form

~x(t0) = ~x0 (3.12)

for some initial value vector ~x0 ∈ Rn.
Next, we show how to convert nth-order linear ODE (3.2) into a first-order linear system of

DEs.3

3There is a method of conversion in the opposite direction as well. Try to come up with it after reading Section 3.3.3.
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3.3.3 Vectorization trick

Example 3.3.2. Convert a second-order ODE into an equivalent 1st-order linear system of DEs:

u′′ − u′ sin t+ 7u = et cos t+ 1. (3.13)

We rewrite the ODE in the standard form: u′′ = u′ sin t− 7u+ et cos t+ 1 and define variables

x1 = u,

x2 = u′.

In terms of these variables,

x′1 = u′ = x2,

x′2 = u′′ = u′ sin t− 7u+ et cos t+ 1 = −7x1 + x2 sin t+ et cos t+ 1.

where for x′2 we first plugged in the ODE. That is, the equivalent system reads(
x′1
x′2

)
=

(
0 1
−7 sin t

)(
x1
x2

)
+

(
0

et cos t+ 1

)
. (3.14)

The first row in the matrix is (0|1), and the entries of the last row are the coefficients of the ODE
in the standard form, in the reverse order.

Exercise 3.3.1. Verify that ODE (3.13) and system (3.14) are indeed equivalent, in the following
sense:

(a) If u(t) satisfies (3.13), then ~x(t) =

(
u(t)
u′(t)

)
satisfies (3.14).

(b) Conversely, for any solution ~x(t) =

(
x1(t)
x2(t)

)
of (3.14), the first component x1(t) satis-

fies (3.13).

General method. We now explain the general method for nth-order ODE in a standard form:

u(n) = a1(t)u
(n−1) + · · ·+ an−1(t)u

′ + an(t)u+ b(t).

We proceed as follows:

x1 = u

x2 = u′

...

xn−1 = u(n−2)

xn = u(n−1).

=⇒

x′1 = u′ = x2

x′2 = u′′ = x3
...

x′n−1 = u(n−1) = xn

x′n = u(n) = an(t)x1 + an−1(t)x2 + · · ·+ a1(t)xn + b(t).
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As the result, we obtain the system ~x′ = A(t)~x+ ~g(t) with

A(t) =


0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1

an(t) · · · · · · a2(t) a1(t)

 and ~g(t) =


0
...
...
0
b(t)

 .

Here ~g(t) has zeroes in the first n− 1 rows and b(t) in the last row. In the first n− 1 rows of A(t), 1
moves from the 2nd to the last position; its last row has the ODE coefficients in the reverse order.

3.3.4 Existence and uniqueness of solutions in linear IVPs

We give a generalization of Theorem 1 (IVP with a 1st-order linear ODE) from the previous chapter.

Theorem 3.3.2. Assume that A(·) ∈ Rn×n and ~g(·) ∈ Rn are continuous in some interval I = (α, β)
containing t0. Then the IVP ~x′ = A(t)~x+ ~g(t), ~x(t0) = ~x0 has a unique solution for any ~x0 ∈ Rn.

We omit the proof. Conceptually, it is similar to that of Theorem 1, but uses vector calculus.
The theorem might also be used for n-order ODEs, by first converting them to an equivalent system.

Example 3.3.3. Identify the largest interval on which a solution exists and is unique, for the IVP

(t− 2)u′′ + 3u = t, u(0) = 0, u′(0) = 1.

Dividing by t− 2, we put equation in the standard form:

u′′ = − 3

t− 2
u+

t

t− 2
.

Then we obtain an equivalent system:

~x′ =

(
0 1
− 3
t−2 0

)
~x+

(
0
t
t−2

)
.

Here both A(t) and ~g(t) are continuous on (−∞, 2) and (2,+∞). The point t0 belongs to the first
interval, so the answer is (−∞, 2) by Theorem 3.3.2.

In fact, we do not even have to convert an ODE to the system: clearly, the equivalent condition
for ODE is that all coefficient functions a1(t), ..., an(t) and b(t) are continuous on I = (α, β) 3 t0.
Note also that it might be the intervals of continuity for some or all of these functions are distinct,
not the same as in the previous example. Then we take all possible intersections of these intervals.

Example 3.3.4. Identify the largest interval where the following IVP has a unique solution:

u′′ +
1

t− 1
u =

t

t− 3
, u(2) = 0, u′(2) = 1.

The coefficient a1(t) ≡ 0 of u′ is continuous everywhere; a2(t) = − 1
t−1 is continuous on (−∞, 1)∪

(1,+∞); finally, b(t) = t
t−3 is continuous on (−∞, 3) ∪ (3,+∞). Hence, we have 3 candidate

intervals (−∞, 1), (1, 3), (3,+∞). The second interval contains t0 = 2, thus is the one we seek.
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3.3.5 Linear independence of functions, Wronskian, fundamental set of solu-
tions

Linear independence of functions. Given n functions u1, ..., un on some interval I ⊆ R, we
call them linearly dependent if there exist a tuple of constants c1, ..., cn, not all zeroes, such that

c1u1(t) + · · ·+ cnun(t) = 0 ∀t ∈ I.

In other words, u1, ..., un are dependent (on I) if some nontrivial linear combination of them is
identically zero on I. Otherwise, u1, ..., un are linearly independent on I; equivalently, any nontrivial
combination c1u1(t)+ · · ·+ cn(t) is nonzero in at least some t ∈ I. To make sense of these definitions,
one might view functions I → R as vectors with continuous index t ∈ I; then the identical zero on I
is the analogue of the zero vector.4

Example 3.3.5. Functions t, t2 are independent on R. Indeed, assume that there are c1, c2 ∈ R
such that c1t+ c2t

2 ≡ 0 for all t ∈ R. Plugging in t1 = 1 and t2 = 2 we get a homogeneous linear
system

c1 + c2 = 0,

c1 + 4c2 = 0

with a nonsingular matrix, hence with a unique solution c1 = c2 = 0. Thus, t, t2 are independent.

One can show independence for the sequence of monomials {1, t, t2, ...}, exponentials {eλt, e2λt, ...},
trigonometric functions {cos(ωt), cos(2ωt), ...} or {sin(ωt) sin(2ωt), ...}. This goes beyond our course.

Example 3.3.6. cos2(t) and sin2(t)− 1 are dependent (on any I ⊆ R) since cos2(t) + sin2(t)− 1 ≡
0.

Wronskian. Let u1, ..., un be n− 1 times differentiable on I. We can construct the square matrix

M(t) =


u1(t) · · · un(t)
u′1(t) · · · u′n(t)

...

u
(n−1)
1 (t) · · · u

(n−1)
n (t)

 ∈ Rn×n.
Its determinant W (t) = det(M(t)), as a function of t ∈ I, is called the Wronskian of u1, ..., un (at t).

Example 3.3.7. The Wronskian of {t, t2} is W (t) =

∣∣∣∣t t2

1 2t

∣∣∣∣ = t2. Note that W (t) = 0 only at t = 0.

Example 3.3.8. For {cos2(t), sin2(t)− 1}, the Wronskian is W (t) ≡ 0 on R. Indeed,

W (t) =

∣∣∣∣ cos2(t) sin2(t)− 1
−2 cos(t) sin(t) 2 sin(t) cos(t)

∣∣∣∣ = 2 sin(t) cos3(t) + 2 sin3(t) cos(t)− 2 sin(t) cos(t)

= 2 sin(t) cos(t) [cos2(t) + sin2(t)− 1] ≡ 0.

The Wroskian gives a necessary condition of dependence.

4This abides the usual definition of linear independence, in the infinite-dimensional vector space of functions on I.

51



Theorem 3.3.3. If u1, u2, ..., un are linearly dependent on I, then W (t) ≡ 0 for all t ∈ I

Proof. The derivative of a linear combination is the same linear combination of the derivatives. So

if c1u1(t) + · · ·+ cnun(t) ≡ 0 on I, with c1, ..., cn ∈ R not all 0, then c1u
(k)
1 (t) + · · ·+ cnu

(k)
n (t) ≡ 0

on I. That is, the columns of M(t) are linearly dependent for all t ∈ I. Thus, W (t) ≡ 0 on I.

Theorem 3.3.3 allows to conclude that u1, ..., un are independent on I by finding some t0 ∈ I such
that W (t0) 6= 0. E.g. t, t2 are independent on any open interval I ∈ R as follows from Example 3.3.7.
The proof also shows why W (t) ≡ 0 is necessary for linear dependence, but might be insufficient.
Indeed, the coefficients of a vanishing linear combination of the columns of M(t) might depend on t,
so there might not be any constants c1, ..., cn that “work” for all t ∈ I simultaneously. However, the
condition actually becomes sufficient if u1, ..., un are analytic (infinitely many times differentiable).

Theorem 3.3.4 (Bôcher). If u1, u2, ..., un are analytic and W ≡ 0 on I, then u1, ..., un are depen-
dent.

In this class, we only deal with functions analytic on their domains, so W ≡ 0 is a criterion.

Fundamental set of solutions in ODEs. If the coefficients a1, ..., an of a homogeneous ODE

u(n) + a1(t)u
(n−1) + · · ·+ an−1(t)u

′ + an(t)u = 0 (3.15)

are continuous on I, then corresponding IVP with t0 ∈ I has a unique solution. Yet, to find this
solution we first have to obtain the general solution of the ODE. How do we know when we have it?

The set of solutions to a homogeneous linear ODE is a vector space: if u(t) and v(t) are
solutions, then their linear combination αu(t) + βv(t) with α, β ∈ R is also a solution.

This vector space is n-dimensional.5 Its arbitrary basis is called a fundamental set of solutions
to (3.15). Therefore:

The general solution of a homogeneous linear ODE of order n on I is of the form

n∑
k=1

ckuk(t), t ∈ I,

where u1, ..., un are linearly independent solutions (a fundamental set of solutions) on I.

If we found n linearly independent solutions, we are done. And if we have some candidates u1, ..., un,
their independence can be verified by Theorem 3.3.3: it suffices to find some t0 ∈ I such that W (t0) 6=
0.

Fundamental set of solutions for systems of DEs. Consider an equivalent to (3.15) system:

~x′ = A(t)~x. (3.16)

5We are not proving this.
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If u1, ..., un are solutions to (3.15), then the vector-functions ~x1, ~x2, ..., ~xn with

~xk(t) =


u1(t)
u′1(t)

...

u
(n−1)
1 (t)


are solutions to (3.16), see Exercise 3.3.1. Therefore, M(t) is the matrix with columns ~x1(t), ..., ~xn(t),
and W (t) 6= 0 if and only if the vectors ~x1(t), ..., ~xn(t) are independent. This warrants a definition:

Definition 12. Vector-functions ~x1, ..., ~xn form a fundamental set of solutions to (3.16) on I if
each of them satisfies (3.16) on I, and

det(~x1(t0) · · · ~xn(t0)) 6= 0 for some t0 ∈ I.

As in the case of ODEs, we conclude:

The general solution of a homogeneous 1st-order linear system of dimension n on I is

n∑
k=1

ck~xk(t), t ∈ I,

where ~x1, ..., ~xk are linearly independent solutions (a fundamental set of solutions) on I.

Next, we learn how to find fundamental solutions for ODEs and systems with constant coefficients.
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3.4 First-order linear systems with constant coefficients

In this section, we study homogeneous linear systems of dimension n with constant coefficients:

~x′ = A~x, (3.17)

as well as n-order ODEs that are reduced to such systems via vectorization. As it turns out, solving
such systems reduces to linear algebra. We begin with a very simple but crucial observation:

If ~v is an eigenvector of A for eigenvalue λ ∈ R, then ~x(t) = eλt~v is a solution to (3.17).

To see why this is the case, and explain where eλt comes from, consider the trivial case n = 1.
The system is then x′ = λx, with 1× 1 matrix (λ). Solving it, we indeed get x(t) = ceλt for c ∈ R.

Now, in the general case A~x(t) = Aeλt~v = eλtA~v = λeλt~v. But also, if vk is the kth entry of ~v,

d

dt
~x(t) =

d

dt

e
λtv1
...

eλtvn

 =

λe
λtv1
...

λeλtvn

 = λeλt~v. (3.18)

We are done.

3.4.1 Real and distinct eigenvalues

Consider the case where A has n real eigenvalues λ1 6= ... 6= λn. In this case, the n corresponding
(real) eigenvectors ~v1, ..., ~vn are linearly independent. This gives n particular solutions to (3.17):

~x1(t) = eλ1t~v1, ..., ~xn(t) = eλnt~vn.

It remains to verify that this is a fundamental set of solutions, by examining the determinant:∣∣~x1(t) · · · ~xn(t)
∣∣ =

∣∣eλ1t~v1 · · · eλ1t~v1
∣∣ = eλ1t · · · eλnt

∣∣~v1 · · · ~vn
∣∣ 6= 0.

Here we used that det(A) is linear in each column of A, then that the exponentials are positive and
the vectors v1, ..., ~vn are linearly independent. Our result can be summarized as follows

Assume all eigenvalues of A are real and distinct, with respective eigenvectors ~v1, ..., ~vn.
Then the general solution of (3.17) is

~x(t) =
n∑
k=1

cke
λkt~vk. (3.19)

Solving IVPs

Let us outline the process of solving IVP for (3.17) with initial condition ~x(t0) = ~x0.

(i) Find the general solution (3.19) by finding the eigenvalues and corresponding eigenvectors
of A.

(ii) Form an n × n linear system in variables c1, ..., cn by plugging the condition ~x(t0) = ~x0
in (3.19).
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Figure 3.2: Component plot for the IVP solution in Example 3.4.1.

(iii) Identify c1, ..., cn by solving this system. Solution is guaranteed to be unique.

Uniqueness is guaranteed since the matrix (~x1(t0) · · · ~xn(t0)) of the linear system in (ii) is nonsingular.

Example 3.4.1. Solve the IVP and sketch the component plots:

~x′ =

(
4 0
−1 2

)
~x, ~x(ln(2)) =

(
4
6

)
.

We find pA(λ) = (4 − λ)(2 − λ), so the eigenvalues are λ1 = 4, λ2 = 2. Since λ1, λ2 ∈ R
with λ1 6= λ2, the corresponding eigenvectors ~v1, ~v2 are real and independent. Now,

A− λ1I =

(
0 0
−1 −2

)
=⇒ ~v1 =

(
2
−1

)
=⇒ ~x1(t) = e4t

(
2
−1

)
;

A− λ2I =

(
2 0
−1 0

)
=⇒ ~v2 =

(
0
1

)
=⇒ ~x2(t) = e2t

(
0
1

)
.

We now find the unknown constants c1, c2 from the linear system(
2e4t0 0
−e4t0 e2t0

)(
c1
c2

)
= ~x0, that is

(
32 0
−16 4

)(
c1
c2

)
=

(
32
0

)
.

We find c1 = 1, c2 = 4, and the IVP solution is ~x(t) = ~x1(t) + 4~x2(t) =

(
2e4t

−e4t + 4e2t

)
. See Fig. 3.2.

Note that A might be singular, i.e. with 0 as one of the eigenvalues; the theory remains valid.

Example 3.4.2 (Compartment model). The levels of liquid in two connected tanks (Fig. 3.3) at
time t satisfy

~x′ =

(
−k k
k −k

)
~x
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Compartment Model

A tank is divided into two cells. Each cell is filled with a fluid, and small
opening allows the fluid to flow freely between the cells.

Assume: height of fluid in a cell changes at a rate proportional to the
difference between fluid height in that cell and the fluid height in the
other cell.
Questions:

1. What happens to the system after a long period of time?

2. Construct a linear system for the fluid level heights.

3. Solve the linear system.

4. Determine whether the solution is unique.

5. Sketch component plots and a phase portrait of the system.

Section 3.3 Slide 3

Figure 3.3: Compartment model.
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NATURAL LANGUAGE MATH INPUT
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Figure 3.4: Component plot for the IVP solution in Example 3.4.2.

where k > 0 is a parameter depending on the liquid Solve the IVP with ~x(0) =

(
2
1

)
and plot the

component plots for the solution. Can you guess, without computation, the value of ~x(t) for large t?

First, we guess that the two levels should match as t→ +∞, as the equilibria are (c, c)> for c ∈ R.
In fact, some intuition from a high-school physics class—the liquid pressure formula ρgh—might
hint that the asymptotic level c is the average of the initial levels in the tanks, i.e. c = 3

2 . We now
solve the IVP. Note that we can factor out k from the matrix, i.e. A = kB with

B =

(
−1 1

1 −1

)
.

The eigenvalues of B are found to be µ1 = 0, µ2 = −2, so those of A are λ1 = 0, λ2 = −2k. For ~λ1 = 0,

we take ~v1 =
(
1 1

)>
. Since B is symmetric, ~v2 is orthogonal to ~v1, and we take ~v2 =

(
1 −1

)>
.

The initial conditions amount to c1 + c2 = 2 and c1 − c2 = 1, whence we find c1 = 3
2 , c2 = 1

2 , and

~x(t) =
1

2

(
3 + e−2kt

3− e−2kt
)
.
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Our guess is correct, and convergence is exponentially fast. See Fig. 3.4.

Phase portraits for two real eigenvalues λ1 6= λ2 6= 0

Note that when A is nonsignular, 0 is not an eigenvalue, and the only critical point is (0; 0). Its type
is defined by the signs of λ1 and λ2. An equilibrium is asymptotically stable if both eigenvalues are
negative, and unstable otherwise. In this section, we assume that λ1 > λ2 without loss of generality.

• There is a Wolfram notebook that allows to sketch phase portraits in two-dimensional systems!

Nodal source (λ1 > λ2 > 0). Unstable equilibrium: trajectories emanate from the origin (see
Example 3.4.1). To sketch the phase portrait, we start by plotting the eigenspaces, i.e. straight lines
along ~v1 and ~v2, and we put arrows in the direction from the origin. Any other trajectory emanates
from the origin to infinity, remaining in its sector. It gets parallel to ~v1 far from the origin and
tangent to ~v2 in the origin. In Fig. 3.5, we sketch the phase portrait of the system in Example 3.4.1.

Nodal sink (λ2 < λ1 < 0). This is an asymptotically stable equilibrium: trajectories go towards
the origin. Note that we can obtain such an equilibrium from a nodal sink by negating A, see Fig. 3.5,
which corresponds to time reversal. The arrows on the straight lines point towards the origin. Other
trajectories go to the origin, getting parallel to ~v2 far from the origin and tangent to ~v1 in the origin.

Saddle (λ1 > 0 > λ2). This is an unstable equilibrium. The arrows point outwards along ~v1 and
towards the origin along ~v2. All other trajectories are U -shaped: they approach the origin up to a
certain point, then run away from it. Far away from the origin they get parallel to ~v1 or ~v2, and the
arrows conform to those on the straight lines. In Fig. 3.5, we sketch the phase portrait for ~x′ = A~x
with eigenvalues λ1 = 8 and λ2 = −2, and respective eigenvectors ~v1 = (−6; 1) and ~v2 = (4; 1).

3.4.2 Complex eigenvalues (without repetition)

Complex algebra. Euler’s formula extends the exponential to imaginary numbers: by definition,

eiθ = cos(θ) + i sin(θ) ∀θ ∈ R.

Then one can extend ez to z = x+ iy ∈ C: by definition, ez := exeiy = ex cos(y) + iex sin(y). This is
a very natural generalization as it preserves the key algebraic property of exponentials, namely that

ez1+z2 = ez1ez2 for all z1, z2 ∈ C.

(This can be checked by Euler’s formula and the formulas for cos(α± β) and sin(α± β).) Moreover,
we can define the derivative of ϕ : R → C by differentiating Reϕ and Imϕ separately. Then, for
example, (eiωt)′ = (cos(ωt) + i sin(ωt))′ = −ω sin(ωt) + iω cos(ωt) = iωeiωt. More generally,

(eλt)′ = λeλt for all λ ∈ C, (3.20)

so the key differential property of the exponential function is also preserved. To summarize, “the
usual algebra and analysis” still work for t 7→ eλt with λ ∈ C, plus we can exploit Euler’s formula.
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Figure 3.5: Left: nodal source (Example 3.4.1). In a nodal sink, the arrows are flipped. Right:
saddle.

Case n = 2

We now consider the case of two complex eigenvalues in dimension n = 2. Recall from Section 2.1
that complex eigenvalues (as well as eigenvectors) of a real matrix come in mutually conjugate pairs:

λ1 = µ+ iω, ~v1 = ~a+ i~b,

λ2 = µ− iω, ~v2 = ~a− i~b,
(3.21)

for some µ, ω ∈ R; ~a,~b ∈ Rn. This holds for all n, but in the case n = 2 we have no other eigenvalues,
and we should be able to obtain a fundamental set of real solutions for (3.17). We prove the
following:

Proposition 3.4.1. System (3.17) with 2 complex eigenvalues (3.21) has a fundamental set of
solutions

~u(t) = eµt cos(ωt)~a− eµt sin(ωt)~b,

~v(t) = eµt sin(ωt)~a+ eµt cos(ωt)~b.

As such, the general solution is ~x(t) = α~u(t) + β~v(t) for α, β ∈ R.

Example 3.4.3. Solve the IVP

~x′ =

(
−1 2
−1 −3

)
~x, ~x(π) = e−2π

(
1
−1

)
.

Here pA(λ) = λ2 + 4λ+ 5, whence λ1,2 = −2± i. The respective eigenvectors can be computed
as in (2.1.2), part (b); we will get

~v1,2 =

(
2
−1

)
± i
(

0
1

)
.
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In terms of (3.21), µ = −2, ω = 1, and we find the general solution

~x(t) = e−2t cos t

(
2c1

c2 − c1

)
+ e−2t sin t

(
2c2

−c1 − c2

)
∀c1, c2 ∈ R.

From the initial condition we get

(
−2c1
c1 − c2

)
=

(
1
−1

)
, whence c1 = −1

2 , c2 = 1
2 , and the solution is

~x(t) = e−2t cos t

(
−1
1

)
+ e−2t sin t

(
1
0

)
.

Proof of Proposition 3.4.1. By (3.20), y(t) = eλt satisfies a homogeneous ODE y′ − λy = 0
with complex coefficient λ ∈ C. Therefore, repeating (3.18), we verify that

~x1(t) = eλ1t~v1, ~x2(t) = eλ2t~v2.

are solutions to (3.17). However, they are complex, and we need real solutions. Now, we check that

~x1(t) = ~u(t) + i~v(t),

~x2(t) = ~u(t)− i~v(t),

that is ~u(t) = Re~x1(t) and ~v(t) = Im~x1(t). Indeed, by Euler’s formula

~x1(t) = eµt[cos(ωt) + i sin(ωt)](~a+ i~b) = eµt[cos(ωt)~a− sin(ωt)~b+ i sin(ωt)~a+ i cos(ωt)~b]

= ~u(t) + i~v(t),

similarly for ~x2(t). This explains where ~u(t), ~v(t) come from, and also shows that they are solutions:

d

dt
~u(t) =

d

dt
Re(~x1(t))

(i)
= Re

(
d

dt
~x1(t)

)
(ii)
= Re(A~x1(t))

(ii)
= ARe(~x1(t)) = A~u(t).

Make sure you understand why (i)–(iii) hold. Finally, to verify that ~u,~v are independent, note that

(
~u ~v

)
= zeµt

(
~a ~b
)( cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
where the rotation matrix in the right-hand side has determinant 1. Hence det

(
~u ~v

)
= e2µt det

(
~a ~b
)
,

where e2µt > 0 since µ ∈ R. But if we assume that det
(
~a ~b

)
= 0, then ~v1, ~v2 must also be

dependent due to (3.21), and this contradicts their linear independence (over C) as they correspond
to λ1 6= λ2.

3.4.3 Case n > 2.

Here we do not consider the case of more than 2 complex eigenvalues in detail. In a nutshell, any
pair of simple complex eigenvalues (i.e. with algebraic multiplicity 1) gives a pair of solutions as
in Proposition 3.4.1. If n > 2 and a pair has multiplicity k > 1, then one can find solutions by
combining Proposition 3.4.1 with the Jordan decomposition trick for repeated eigenvalues, to be
presented later.
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Figure 3.6: Phase portrait for ~x′ = A~x where A has eigenvalues 3± 2i, so (0; 0) is a spiral source.

Phase portraits for two complex eigenvalues

When the eigenvalues are complex, there are three cases, depending on the sign of their real part µ.

Spiral source (µ > 0) – Spiral sink (µ < 0). All trajectories are spirals emanating from
(resp. going to) the origin for a source (resp. sink); source is unstable, and sink is stable. (Do you
understand why?) In Fig. 3.5, we sketch the phase portrait of a system with a spiral source, and
in Example 3.4.3 the equilibrium is a spiral sink. When sketching a spiral source/sink, the only
dilemma is to guess the direction of rotation: clockwise or counterclockwise. This can be done by
trying a couple of “simple” test values for ~x, e.g. (1; 0) and (0; 1), computing the corresponding
values of the flow ~x′, and checking if they are consistent with the tentative direction of rotation.
For the system

~x′ =

(
4 5
−1 2

)
~x

in Figure 3.6, the eigenvalues are 3 ± 2i, so we have a spiral source. From (1; 0) we move in the
direction (4;−1), and from (0; 1) in the direction (5; 2); this is consistent with the clockwise rotation.

Circular case (µ = 0). If µ = 0, i.e. both eigenvalues are imaginary, all trajectories are ellipses,
and the direction of rotation can be determined by the same method as for spiral source/sink. In
fact this is a “neutral” equilibrium: it does not attract nor repell.
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3.4.4 Repeated eigenvalues

We now consider the general situation of an n-dimensional system with eigenvalues λ1, ..., λn that
might repeat. The following example demonstrates that this is a practically relevant situation.

Example 3.4.4 (Reversive motion). The motion of a point in the plane is described by the equation

x′ = −x+ ky,

y′ = −y,

where k ∈ R is a parameter, with initial condition ~r(0) = (1; 2). Find its position ~r(t) at any t ∈ R.

Let us deal with this example “ad-hoc,” then study the general case. Our equation is ~r′ = Ar with

A =

(
−1 k
0 −1

)
.

The matrix is upper-triangular, and diagonal when k = 0. For k 6= 0, the variables x, y are coupled.

Diagonal case: k = 0. Here A = −I, with eigenvalues λ1,2 = −1. Moreover, A− (−1)I = 0, so
any ~v ∈ R2 is an eigenvector; in particular, ~v1 = (1; 0) and ~v2 = (0; 1) is a pair of independent ones.
On the other hand, in our system with k = 0, each of the two equations only concerns its own
variable x or y, so these variables do not interact; thus, we can solve the two equations separately.
The corresponding general solution is given by x(t) = c1e

−t and y(t) = c2e
−t for c1, c2 ∈ R, that is

~r(t) = c1e
−t
(

1
0

)
+ c2e

−t
(

0
1

)
.

Nondiagonal case: k 6= 0. Note that the eigenvalues of A are the same as before: λ1,2 = −1.
(This is, in fact, a general result for upper- and lower-triangular matrices.) However, the nullspace of

A+ I =

(
0 k
0 0

)
has dimension 1; namely, it is the span of ~v = (1; 0). On the other hand, we can solve our system by
substitution. Namely, we first solve the second equation that only concerns y; its general solution is
y(t) = ce−t. Plugging y(t) in the first equation, we get a parameterized first-order ODE in x:

x′ + x = cke−t,

that can be solved via the integrating factor method. Doing so, we get x(t) = (c1 + ckt)e−t.
Introducing ~w1 = (0; 1

k ) and c2 = ck, we express the answer in the vector form:

~r(t) = e−t
(
c1 + ckt

c

)
= c1e

−t~v + c2e
−t (t~v + ~w) .

We also note that eigenvalue λ = −1, respective eigenvector ~v, and the vector ~w satisfy the relation

(A− λ)~w = ~v.

From linear algebra we recall that ~w is called (the first) generalized eigenvector of eigenvalue λ.
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Generalized eigenvectors. Before we proceed further to the general theorem, let’s recall a
result from linear algebra (see also the beginning of this chapter). Assume A is a square matrix of
dimension n, and its characteristic polynomial pA has some root λ ∈ C with multiplicity m 6 n.
Then m(λ) is called the algebraic multiplicity of eigenvalue λ, whereas s(λ) = dim(Null(A− λI)) is
the geometric multiplicity of eigenvalue λ. For any eigenvalue λ, it holds that 1 6 s(λ) 6 m(λ) 6 n,
and the sum of algebraic multiplicities over all (distinct) eigenvalues of A is n. If it happens, for A at
hand, that s(λ) = m(λ), then the subspace Null(A− λI) has a basic of eigenvectors, and otherwise
it’s not the case; these two situations corresponded, respectively, to k = 0 and k = 1 in the above
example. We now recall Jordan’s theorem from linear algebra – first, for the case of s(λ) = 1.

Theorem 3.4.1. Let λ be an eigenvalue of A with algebraic multiplicity m > 2 and single independent
eigenvector ~v. There exist m independent vectors ~w0[= ~v], ~w1, ..., ~wm−1 that form the Jordan chain:

(A− λI)~w0 = 0,

(A− λI)~w1 = ~w0,

...

(A− λI)~wm−1 = ~wm−2.

Moreover, the chain cannot be continued: the system (A− λI)~u = ~wm−1 has no solutions in ~u ∈ Cn.

In the previous example with k 6= 0, for λ = −1 we have m = 2 and s = 1; the Jordan chain is
comprised of ~w0 = ~v = (1; 0) and ~w1 = ~w = (0; 1

k ), and there exists no ~u such that (A− λI)~u = ~w1.
We can construct a Jordan chain for λ with m > 2 and s = 1 as follows.

1. Find some eigenvector ~v by solving (A− λI)~v = 0, and let ~w0 = ~v

2. Repeat the following for k ∈ {1, ...,m− 1}: given ~wk−1, find ~wk by solving (A− λI)~u = ~wk−1.

In fact, it is guaranteed that the solution in step 2 is unique for each k ∈ {1, ...,m− 1}; in particular,
we can rescale the whole chain by the same scalar, but not its vectors separately from each other.

Remark 3.4.1. We briefly discuss the case of 1 < s < m (which we shall not encounter in this
class). In this case, there are s independent eigenvectors ~v1, ..., ~vs and s respective Jordan chains,
each starting from its own eigenvector. The sum of lengths of these chains is m. To find these
chains, we can run the above process for each chain incrementally, cutting it when we cannot find
the next link.

Returning to systems of DEs, we have the following general result.

Theorem 3.4.2. Let A ∈ Cn×n have an eigenvalue λ with algebraic multiplicity m and geometric
multiplicity s, with the corresponding Jordan chains(

~w
(1)
0 , ..., ~w

(1)
m1−1

)
; · · · ;

(
~w
(s)
0 , ..., ~w

(s)
m1−1

)
.

Then ~x ′ = A~x has m solutions of the form

eλt ~w
(j)
0 , eλt

(
t~w

(j)
0 + ~w

(j)
1

)
, ..., eλt

(mj∑
k=1

tmj−k ~w
(j)
k−1

)
for j ∈ {1, ..., s}.

The resulting n solutions (for all eigenvalues) are independent, so give a fundamental set of solutions.
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Proof. We only consider the simplest case to highlight the mechanism; the general case can be
handled by induction. Namely, assume m = 2 and s = 1, and let ~v, ~w be the Jordan chain of λ. We
already know that ~x0(t) = eλt~v is a solution of ~x′ = A~x, so it remains to verify that ~x1(t) = eλt(t~v+ ~w)
is a solution as well, and that the two are independent. For the first claim, we observe that

A~x1(t) = eλt(tA~v +A~w) = eλt(λt~v + λ~w + ~v) = ~x′(t).

As for the second claim, it follows from the independence of ~v and ~w. Indeed, the Wronskian reads

W (t) =
∣∣~x0(t) ~x1(t)

∣∣ =
∣∣eλt~v eλt(t~v + ~w)

∣∣ = e2λt
∣∣~v t~v + ~w

∣∣ = e2λt
∣∣~v ~w

∣∣ 6= 0.
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Appendix A

Recap of calculus on R

A.1 Limits

Composition rule. Let f, g, ϕ be functions on R. The key property of the limit operation is that

ϕ
(

lim
x→a

f(x)
)

= lim
x→a

ϕ(f(x)),

provided that the limit in the LHS exists and ϕ is continuous at f(a). This generalizes to the
multivariate situation where f : Rn → Rm and ϕ : Rm → Rk. For example, this implies the rules

lim
x→a

f(x) + g(x) = lim
x→a

f(x) + lim
x→a

g(x), lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x)

where x ∈ R, and the LHS exists whenever the RHS does.

A.2 Differentiation

Definitions. Recall that the derivative of f at x is defined as

f ′(x) := lim
δ→0

f(x+ δ)− f(x)

δ

whenever the limit in the RHS exists; we also say that f is differentiable at x if this is the case.
We can also define the right and left derivatives f ′(x + 0), f ′(x − 0) by requiring that δ → +0
or δ → −0 respectively. Geometrically, f ′(x) is the slope (of the tangent line) of the graph of f at x.
If f is differentiable at x, then the graph is “smooth” at x, so the tangent line is unique (and not
vertical). If, say, f ′(x+ 0) and f ′(x− 0) both exist but are different, then the graph has a “kink”
at x, so there tangent line is not unique, and f is not differentiable at x (e.g. f(x) = |x| at x = 0).

Common derivatives:

• Constant: c′ = 0 for any c ∈ R.

• Powers: (xp)′ = pxp−1 for p 6= 0.

• Exponential: (ex)′ = ex.
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• Natural logarithm: (ln(x))′ = 1/x for x > 0 and (ln(−x))′ = 1/x for x < 0.

• Trigonometric functions:1

sin′(x) = cos(x), cos′(x) = − sin(x),

tan′(x) =
1

cos2(x)
, cot′(x) = − 1

sin2(x)
.

Chain rule:
( ϕ(f(x)) )′ = ϕ′(f(x)) · f ′(x).

Product rule:
(fg)′ = f ′g + fg′.

Quotient rule: (
f

g

)′
=
f ′g − fg′

g2
.

Combining the chain and product rules with common derivatives, we can handle complicated
functions, or refresh our memory. For example, if we remember that sin′(x) = cos(x), we verify that

(cos(x))′ =
(

sin
(π

2
− x
))′

=
(π

2
− x
)′
· sin′

(π
2
− x
)

= (−1) · cos
(π

2
− x
)

= − sin(x).

Another exercise: recover the quotient rule from the product and chain rules by introducing h = 1/g.
Other useful formulas that can be obtained in this fashion are

(ax)′ = ln(a) · ax, (loga(x))′ =
1

x ln(a)
.

Inverse function. Recall that function ϕ is the inverse of function f on I (denoted ϕ = f−1) if

ϕ(f(x)) = x ∀x ∈ I.

That is: if f maps x ∈ I to some y ∈ J , then ϕ = f−1 maps y back into x. Drawing the plot of f−1

amounts to “mirror-reflecting” the plot of f across y = x (or swapping x and y). E.g., ϕ(y) = y1/3 is
the inverse of f(x) = x3 on R; more generally, f(x) = xp has the inverse ϕ(y) = y1/p on I = (0,+∞),
and on I = R when p ∈ {1, 3, 5, ...}. Recall also that ln(·) is defined as the inverse function of ex:

ln(ex) = x,

see Fig. A.1. Differentiating both sides, we derive the formula ln′(y) = 1/y from (ex)′ = ex. More
generally, differentiating ϕ(f(x)) = x we obtain an explicit formula for the derivative of the inverse:

ϕ′(y) =
1

f ′(ϕ(y))
.

1Recall that tan(x) := sin(x)
cos(x)

and cot(x) := 1
tan(x)

= cos(x)
sin(x)

.
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Figure A.1: ϕ(·) = ln(·) is the inverse function for f(x) = ex on R.

A.3 Integration

There are two different notions of integral, connected through the fundamental theorem of calculus:
indefinite integrals (a.k.a. antiderivatives) and definite integrals.

Indefinite integrals (antiderivatives). We say that F is an antiderivative of f on I when

F ′(x) = f(x) ∀x ∈ I.

In other words, finding an antiderivative is the inverse operation for differentiation. Note that if F
is an antiderivative for f , then so is f + c for any c ∈ R. Moreover, we do not “lose” anything: the
set of all antiderivatives of f is given by {F (x) + c|c ∈ R}, where one can choose F as any specific
antiderivative of f . Sometimes, we cannot afford to ”lose” the constant, as we need all possible
antiderivative, not just a specific one. In this case, we write∫

f(x)dx = F (x) + C (∀C ∈ R)

and call the LHS the (indefinite) integral of f . Specification ∀C ∈ R is often omitted – but assumed.
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Common integrals:

• Exponential:
∫

(ex)dx = ex + C and
∫
axdx = 1

ln(a)a
x + C.

• Powers:
∫
xrdx = 1

r+1x
r+1 + C for r 6= −1.

• Linear reciprocal:
∫
dx
x = ln |x|+ C, or more generally∫

dx

x+ a
= ln |x+ a|+ C. (A.1)

• Positive quadratic reciprocal (a 6= 0):∫
dx

x2 + a2
=

1

a
arctan

(x
a

)
+ C. (A.2)

• Rational functions:
∫ P (x)
Q(x)dx, where P,Q are polynomials. There is no explicit formula, but

such integrals can be found by the method of partial fractions, as explained below.

• Trigonometric functions:∫
sin(x)dx = − cos(x) + C,

∫
cos(x)dx = sin(x) + C,∫

dx

cos2(x)
= tan(x) + C,

∫
dx

sin2(x)
= − cot(x) + C.

Many trigonometric integrals can be done by combining these with change of variable and
trigonometric identities (see en.wikipedia.org/wiki/List_of_trigonometric_identities).

Change of variable (integration by substitution). This is essentially the reverse chain rule:∫
f(g(x))g′(x)dx = F (g(x))

where F (u) =
∫
f(u)du. It allows to evaluate the integral in the LHS if we know how to integrate f .

Note also that the formula becomes transparent in Leibniz notation, i.e. by writing dg(x) = g′(x)dx.

Fundamental theorem of calculus. This theorem connects definite integral with antiderivative:∫ b

a
f(x)dx = F (b)− F (a).

A.3.1 Integration by partial fractions

Reciprocal of a quadratic. Let us first explain how to evaluate an integral of the form∫
dx

ax2 + bx+ c
. (A.3)
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By the fundamental theorem of algebra,

ax2 + bx+ c = a(x− x1)(x− x2)

where x1, x2 are the roots of ax2 + bx+ c, i.e. solutions of the equation ax2 + bx+ c = 0. We assume
that the roots are real. Multiplying for convenience by a, we get∫

a

ax2 + bx+ c
dx =

∫
dx

(x− x1)(x− x2)
, (A.4)

and our task reduces to evaluating the RHS. Now, if x1 = x2, then
∫

dx
(x−x1)(x−x2) =

∫
dx

(x−x1)2 is

reduced to the integral
∫

1
t2
dt = −1

t + C by the change of variables t = x − x1. Hence, we can
assume that x1 6= x2 and use the method of partial fractions: find the coefficients A1, A2 such that

1

(x− x1)(x− x2)
≡ A1

x− x1
+

A2

x− x2
. (A.5)

Essentially, this operation is reverse for reducing to a common denominator: A1 and A2 must satisfy

A1(x− x2) +A2(x− x1) = 1

for all x, in particular x ∈ {x1, x2}. Plugging these values of x, we find A1 = 1
x1−x2 and A2 = 1

x2−x1 .
Thus, by (A.4)–(A.5) we reduce the reciprocal-quadratic integral (A.3) to a sum of integrals of the
form (A.1).

Example A.3.1. Compute
∫

dx
x2+3x+2

.

Proof. We find the roots x1 = −1 and x2 = 2, by a lucky guess or the discriminant formula. Thus,

x2 + 3x+ 2 = (x+ 1)(x− 2),

and we can find A1, A2 such that

1

x2 + 3x+ 2
=

1

(x+ 1)(x− 2)
=

A1

x+ 1
+

A2

x− 2

by solving
A1(x− 2) +A2(x+ 1) = 1.

Plugging in x = −1 and x = 2, we recover A1 = −1/3 and A2 = 1/3, and then compute the integral:∫
dx

x2 + 3x+ 2
=

∫ (
A1

x+ 1
+

A2

x− 2

)
dx =

1

3

(∫
dx

x− 2
dx−

∫
dx

x+ 1
dx

)
=

1

3
ln

(
|x− 2|
|x+ 1|

)
+ C.
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Reciprocal of a polynomial. The method of partial fractions can be generalized for computing∫
dx

Q(x)
(A.6)

where Q is a polynomial of degree n. Assuming that the coefficient of xn in Q is 1, it holds that

Q(x) = (x− x1)(x− x2) · · · (x− xn)

where x1, ..., xn are the roots of Q. We can then try to find A1, ..., An that ensure the identity

1

(x− x1)(x− x2) · · · (x− xn)
≡ A1

x− x1
+

A2

x− x2
+ · · ·+ An

x− xn

or, equivalently,

A1(x− x2) · · · (x− xn) +A2(x− x1)(x− x3) · · · (x− xn) + · · ·+An(x− x1) · · · (x− xn−1) ≡ 1.

The LHS is a polynomial of degree n− 1, and equating its coefficients to (1, 0, ..., 0) gives a system
of n linear equations in A1, ..., An. In fact, one can show that this system will have a unique solution
when the roots are distinct: x1 6= ... 6= xn. Solving it, we recover A1, ..., An and so reduce (A.6)
to (A.1).

Rational functions. Finally, let us see how to integrate a rational function, i.e. compute∫
P (x)

Q(x)
dx. (A.7)

where P and Q are polynomals, respectively, of degrees m and n. We can assume that m > 1;
otherwise we are in the previous case. We also assume, as before, that the highest-degree coefficient
in Q is 1 and its roots x1, ..., xn are distinct. Proceeding as before, we can find A1, ..., An such that

1

Q(x)
≡ A1

x− x1
+

A2

x− x2
+ · · ·+ An

x− xn
.

Multiplying by P (x) we get

P (x)

Q(x)
≡ A1

P (x)

x− x1
+A2

P (x)

x− x2
+ · · ·+An

P (x)

x− xn
.

Now recall that any polynomial P (x) of degree m > 1 can be divided over linear polynomial x− x0
with remainder of the form r0

x−x0 . That is, for any x0 ∈ C and polynomial P (x) of degree m, one has

P (x)

x− x0
= R(x) +

r0
x− x0

with some r0 ∈ C and polynomial R(x) of degree m − 1. Here R(x) and r0 can be computed by
algebra. Dividing P (x) over n linear polynomials x−x1, ..., x−xn in turn, we reduce (A.7) to (A.1).

Example A.3.2. Compute
∫

3x
x2+3x+2

dx.
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Proof. From Example A.3.1 we recall that

3x

x2 + 3x+ 2
=

x

x− 2
− x

x+ 1
.

Here Q(x) = x2 + 3x+ 2 and P (x) = 3x. Since m = 1, polynomial division is trivial here:

x

x− 2
=
x− 2 + 2

x− 2
= 1 +

2

x− 2
and

x

x+ 1
=
x+ 1− 1

x+ 1
= 1− 1

x+ 1
.

Therefore ∫
3xdx

x2 + 3x+ 2
=

∫
2dx

x− 2
−
∫

dx

x+ 1
= 2 ln(|x− 2|)− ln(|x+ 1|) + C.

Example A.3.3. Divide the polynomial 3x2+x−4 over the linear polynomial x−2 with a remainder.

Proof. We observe that

3x2 + x− 4

x− 2
=

3x(x− 2) + 6x+ x− 4

x− 2
= 3x+

7x− 4

x− 2
= 3x+

7(x− 2) + 10

x− 2
= 3x+ 7 +

10

x− 2
.
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