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Lecture 1: Deviation bounds for random variables

Preliminaries. LetX be a scalar random variable (i.e. a Borel-measurable function onR) with c.d.f. FX(x).
In this lecture, we shall focus on bounding the tail function ΦX(x) := 1 − FX(x) = P{X > x}, as well as
the two-sided counterpart Φ|X|(x) = P{|X| > x}, under various assumptions on X. Sometimes, when the
random variable of interest is clear from the context, we drop the subscript. Note that we can reduce the
task of bounding Φ|X|(x) to that of bounding the right and left tails separately. However, it might be more
convenient to study |X| directly, since this random variable is nonnegative – as Markov’s inequality requires.

1 Markov’s inequality and Chernoff’s method

Our first inequality is the most basic one: it only requires that X is nonnegative and has a finite expectation.

Theorem 1.1 (Markov). Assume X ⩾ 0 a.s. and E[X] <∞. Then for u > 0 one has P{X > u} ⩽
E[X]

u
.

Proof. Assuming that the distribution of X is absolutely continuous, and denoting its p.d.f. with fX , we get

E[X] =

∫ ∞

0

xfX(x)dx =

∫ u

0

xfX(x)dx+

∫ ∞

xu

xfX(x)dx

⩾
∫ ∞

u

xfX(x)dx

⩾
∫ ∞

u

ufX(x)dx = uΦX(u).

Here the first inequality is since X is nonnegative, and the second one is since we integrate over x ⩾ u. In the
general case, we proceed in the same way but integrating against some reference measure dµ(x) on R+.

Corollary 1.1. Applying Markov’s inequality to r.v. |X|, we get P{|X| > u} ⩽
E[|X|]
u

provided E[|X|] <∞.

Chernoff’s bounding method. Let g : R→ R+ be an increasing function. Then g(X) is a nonnegative
random variable (even when X is not), and {X ⩾ u} is the same event as g(X) ⩾ g(u). Thus, we can bound
the tail function of X by applying Markov’s inequality to g(X), with the bound in terms of g(X) and g(u):

P{X ⩾ u} = P{g(X) ⩾ g(u)} ⩽
E[g(X)]

g(u)
.

Of course, for this bound not to be vacuous, it must be that E[g(X)] < ∞. This trick is sometimes called
“Chernoff’s bounding method,” though the idea can be traced back at least to Cramér in 1930s. Of course,
the question is how to select the mapping g(·): on the one hand, one would like to make the right-hand side
as small as possible; on the other hand, we would also like g(·) to “tensorize:” informally, to be well-behaved
under convolution. This means that if X,Y are jointly independent r.v.’s, then g(X +Y ) must be expressed
in terms of g(X) and g(Y ). As it turns out, there is a nice way to impose this tensorization requirement
with almost no loss of tightness. Before elaborating further on this, let us consider some concrete examples.

Chebyshev’s inequality and moment bounds

We start with a straightforward generalization of Theorem 1.1. In the next result, the assumptions thatX ⩾ 0
and E[X] <∞ replaced with the assumption that E[|X|] <∞. Note that this assumption implies E[X] <∞
and the existence of the first absolute central moment E[|X − E[X]|] <∞ by the triangle inequality.

Theorem 1.2. Assume that E[|X|] <∞. Then for u > 0 it holds that P{|X−E[X]| > u} ⩽
E[|X − E[X]|]

u
.
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Exercise 1.1. Prove Theorem 1.2 via Chernoff’s method. Note: g might (and will) depend on the law of X.

Theorem 1.3 (Chebyshev). If X ∈ R has a finite variance, then P {|X − E[X]| > u} ⩽
VarX

u2
for u > 0.

Of course, we can run this trick for any absolute moment, even fractional ones, to get the following result.

Theorem 1.4 (Moment bound). Assume E[X] <∞ and E[|X−E[X]|p] <∞ for some p > 0. Then ∀u > 0,

P{|X − E[X]| > u} ⩽
E [|X − E[X]|p]

up
.

Remark. For any p ⩾ 1, the quantity ∥Z∥Lp := E1/p[|Z|p] is a norm over distributions, and a quasinorm—
i.e. it does not satisfy the triangle inequality—whenever 0 < p < 1. Using Hölder’s inequality, one may verify
that ∥Z∥Lp increases in p > 0.1 As such, the assumptions of Theorem 1.4 get stronger with increasing p > 0.

2 Moment-generating function and the MGF method

The moment-generating function (MGF) of X is defined by MX(t) := E[etX ], where the value +∞ is allowed.
Note that MX is an extended-value convex function, as a weighted sum of convex functions. A somewhat less
trivial fact, to which we shall return many times later, is the convexity of the cumulant KX(t) := logMX(t).

Exercise 2.1. Show that KX is convex. Use Young’s inquality: for a, b ∈ Rd and p, q ∈ [1,∞] with 1
p+ 1

q = 1,

|a⊤b| ⩽ ∥a∥p∥b∥q. (1)

Note that MX(0) = 1, so the domain of MX is nonempty. In fact, by Exercise 2.1, the domain of MX is
a convex subset of R, i.e. a “segment” (both R and R+ qualify). The name comes from the following result.

Proposition 2.1. Assume MX exists in an open interval around 0. Then for any k ∈ N with a finite r.h.s.,

M
(k)
X (0) = E[Xk]. (2)

Proof. It suffices to differentiate under the integral sign,

M
(k)
X (t) =

dk

dtk

(∫
R

etxfX(x)dx

)
=

∫
R

xketxfX(x)dx = E[XketX ],

and take the limit as t→ ∞. Of course, one must ensure this is allowed, under the assumption on MX .

Revisiting our previous discussion, MGF tensorizes: if X,Y ∈ R are jointly independent, then

MX+Y (t) = E[et(X+Y )] = E[etX ]E[etY ] = MX(t)MY (t). (3)

These transitions are by the property of the exponential ea+b = eaeb, and since the functions of independent
random variables are also independent. This suggests to take etx in the role of g = gt(x), then select the
best t, i.e. t > 0 minimizing the right-hand side (note that etx is increasing in x whenever t > 0). This
method, called the Chernoff method “proper” (or exponential Markov), bounds the tails in terms of MGF:

P{X ⩾ u} ⩽ inf
λ>0

MX(λ)e−λu. (4)

Note that the infinum here is formally taken over all λ ∈ R, but can only be attained at λ where MX(λ) <∞.
In the sequel, we shall use the product property (3) to bound the tail probabilities for sums

∑
k∈[n]Xk

of independent random variables via the MGF method. But before, let us discuss how some matters related
to the accuracy of this method, in the context of comparing it with the moment bounds and instantiating it
for Gaussian tails. Our first take on this is rather superficial, but later on we shall revisit this discussion at
a deeper level, through the prism of large deviations theory.

1This is a nice exercise: Young’s inequality (1) does the trick in the case p ⩾ 1; for p < 1 one needs a change of variables.
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MGF method vs. moment bounds

A natural question is to compare the best exponential bound (4) with the moment bound: either with the
infinum of the r.h.s. in the inequality of Theorem 1.4, or with the simplified moment bound assuming X > 0,

P{X > u} ⩽ inf
p>0

E [Xp]u−p.

As it turns out, the best moment bounds are generally sharper, even if we only use the integer moments.

Exercise 2.2. (a) Show that if X > 0 a.s., then for any u > 0,

inf
λ>0

MX(λ)e−λu ⩾ inf
k∈Z+

E
[
Xk
]
u−k.

(b) Show that if X is symmetric (i.e. X and −X have the same distribution), then for any u > 0,

inf
λ>0

MX(λ)e−λu ⩾
1

2
inf
k∈Z+

E
[
X2k

]
u−2k.

Gaussian tail bounds

We now apply the MGF method to control the devations of X ∼ N (µ, σ2) from E[X] = µ. Here the p.d.f. is

fX(x) =
1√

2πσ2
exp

(
− (x− µ)

2

2σ2

)
.

Exercise 2.3. Show that the d-variate Gaussian integral Id :=
∫
R
· · ·
∫
R
e−

z21
2 · · · e−

z2d
2 dz1 · · · dzd equals (2π)d/2.

To this end, reduce to the general case to d = 2 and handle the latter in polar coordinates (the Jacobian is r).

W.l.o.g. we can consider Z ∼ N (0, 1), using that X = µ+σZ. For example, P{X−µ ⩾ σz} = P{Z ⩾ z}.

Lemma 2.1. For Z ∼ N (0, 1), the MGF is MZ(λ) = exp
(
λ2

2

)
.

Proof. It suffices to complete the square:

MZ(λ) =
1√
2π

∫
R

exp

(
λz − z2

2

)
dz =

e
λ2

2

√
2π

∫
R

exp

(
− (z − λ)2

2

)
dz = e

λ2

2 .

Now, let us apply the MGF method:

P {Z ≥ z} ⩽ inf
λ⩾0

MZ(λ)e−λz ⩽ inf
λ⩾0

exp

(
λ2

2
− λz

)
= exp inf

λ⩾0

(
λ2

2
− λz

)
= exp

(
−z

2

2

)
.

In the last two identities, we first used that exp is monotonically increasing; then we minimized the convex
quadratic in λ ∈ R and used that the unconstrained minimum is attained at a positive λ = z. As the result,

P {X − µ > σz} ≤ exp

(
−z

2

2

)
,

P {|X − µ| > σz} ≤ 2 exp

(
−z

2

2

)
.

(5)

Bounds on the tail probabilities can be recast as confidence intervals, by inverting the tail function. In
particular, we have just shown that for any fixed δ ∈ (0, 1), each of the two events

X − µ ⩽ σ

√
2 log

(
1

δ

)
; σ

√
2 log

(
2

δ

)
⩽ |X − µ| ⩽ σ

√
2 log

(
2

δ

)
(6)

holds with probability at least 1 − δ. This form is convenient when dealing with maxima over a multiple
random variables, due to the simplicity of taking the union bound. In particular, (6) implies the result below.
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Proposition 2.2. Let Mn := maxj∈[n]{Xj − µ}, where Xj ∼ N (µ, σ2) for k ∈ [n]. With prob. ⩾ 1 − δ,

Mn ⩽ σ

√
2 log

(n
δ

)
.

Two remarks are in order. First, the result does not impose any assumption on the joint distribution of
the random vector (X1, ..., Xn), other than Xj ∼ N (µ, σ2) marginally. Second, since log(nδ ) = log(n)+log( 1

δ )

and
√
a+ b ⩽

√
a+

√
b for a, b ⩾ 0, we conclude that

Mn ⩽ σ
√

2 log n+ σ
√

2 log (δ−1).

The r.h.s. is the sum of a δ-independent term corresponding (up to a constant factor) to the expectation
of Mn = σmaxj∈[n] Zj , and a δ-dependent term scaled by σ, the standard deviation of an individual r.v.
Such additive structure is related to the concentration of measure phenomenon, to which we shall yet return.

Exercise 2.4. Show that for any n ∈ N and some constant c > 0, one has Emaxj∈[n] |Zj | ⩽
√

2 log(2n)+c.

Refined bounds for Gaussian tails

In the Gaussian case, one can refine the tail bounds coming from the MGF method. As in many other
situations, the key is to “get more analytical” – here, by using the exact expression for the Gaussian density.
In particular, letting ϕ and Φ be, respectively, the p.d.f. and tail function of N (0, 1), one has the following:(

1

u
− 1

u3

)
ϕ(u) ⩽ Φ(u) ⩽

1

u
ϕ(u) ∀u > 0. (7)

Exercise 2.5. Prove (7). Start with the upper bound, then prove the lower bound using integration by parts.

Note that for u large enough, the upper bound in (7) is stronger than the one obtained with the MGF
method; moreover, the lower bound matches it in the first order when u→ ∞; in this sense, (7) is tight for
large deviations. Remarkably, the trick you employed to pass from the upper bound to the lower bound can
be reiterated: applying it to the lower bound, we get a new upper bound.

Exercise 2.6. Prove the refined upper bound:

Φ(u) ⩽

(
1

u
− 1

u3
+

3

u5

)
ϕ(u) ∀u > 0. (8)

Applying this method iteratively we express Φ(u)/ϕ(u), so-called Mills ratio, as a convergent power series.

Theorem 2.1. It holds that

Φ(u) = ϕ(u)

∞∑
k=0

(−1)k
(2k − 1)!!

u2k+1
, ∀u > 0. (9)

Moreover, stopping this series at any positive or negative term gives an upper or lower bound, respectively.

Let us note that one can also approximate the tail function as a power series in u rather than 1/u (i.e.,
center the Taylor expansion at 0 rather than ∞). Deriving the following result is a nice analytical exercise.

Exercise 2.7. Show that
1

2
− Φ(u) =

1√
2π

∞∑
k=0

(−1)ku2k+1

2kk!(2k + 1)
.

Hint: change variable to remove u from the integration limits, then take derivatives in u under the integral.

For other convergent approximations of Φ(u)/ϕ(u), see the paper [Due10] and the reference book [AS65].
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Lecture 2: Subgaussian distributions

Disclaimer. This lecture follows Section 5 of Vershynin’s lectures [Ver12], in particular Lemma 5.5 therein.

Definition 1. A random variable X is called K-subgaussian (or subgaussian with parameter K), K > 0, if

MX(λ) ⩽ exp

(
K2λ2

2

)
∀λ ∈ R.

Remark. The subgaussian parameter K describes the spread of X, and its square K2 is sometimes referred
to as variance proxy. Note that the MGF argument λ has the units inverse to those of X, and K has the
same units as X. (It only makes sense to exponentiate or take logarithm of a unitless quantity – think why!)

The subgaussian property is homogeneous: the subgaussian parameter of αX, α > 0, is α times that of X.

1 Examples

Gaussian case. The name ”subgaussian” comes from the fact that in the Gaussian case, the inequality of
Definition 1 is tight. In other words (by Lemma 2.1):

Distribution N (0, σ2) is σ-subgaussian.

For what is to follow, the following calculation is instructive.

Exercise 1.1. Show that for Z ∼ N (0, 1), one has E[Z2k] = (2k−1)!! for k ∈ N. Conclude that ∥Z∥Lp ⩽
√
p.

Bounded case. It is a classical result by Vassily Hoeffding that bounded random variables are subgaussian.

Theorem 1.1 (Hoeffding’s lemma). Let X be zero-mean and supported on [a, b], then X is b−a
2 -subgaussian:

MX(λ) ⩽ exp

(
λ2(b− a)2

8

)
. (10)

Proof. We can assume a < 0 < b, the other cases being trivial. By Jensen, eλx ⩽ x−a
b−a e

λa + b−x
b−ae

λb, whence

MX(λ) = E[eλX ] ⩽
E[X] − a

b− a
eλa +

b− E[X]

b− a
eλb =

beλb − aeλa

b− a

Thence one may proceed via some (not completely trivial) calculus, showing that the right-hand side is
dominated by that in (10). For simplicity, we only consider the symmetric case a = −b. Here, we have to
show that, for all b > 0,

beλb + be−λb

2b
⩽ exp

(
λ2b2

2

)
∀λ ∈ R,

which amounts to showing that log cosh(u) ⩽ u2

2 for all u ∈ R. For ϕ(u) = u2

2 − log cosh(u), we find that
ϕ(0) = ϕ′(0) = 0 and ϕ′′(u) ⩾ 0, whence the desired inequality follows by Jensen.

Exercise 1.2. Complete the proof of Theorem 1.1 without assuming a+ b = 0.

Exercise 1.3. Prove that Theorem 1.1 is tight, by exhibiting a distribution for which the equality is attained.
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2 Equivalent subgaussian properties

Recall that for X ∼ N (0, σ2), the Lp-norms grow as E1/p[|X|p] ∼ σ
√
p, the MGF is M(λ) = exp

(
σ2λ2

2

)
,

and the tails decay as P{|X| ⩾ x} ⩽ 2 exp
(
− x2

2σ2

)
. These properties generalize to subgaussian distributions.

Proposition 2.1 ([Ver12, Lemma 5.5]). Consider the following three properties for a random variable X.

i. Subgaussian tail decay:

P {X ≥ x} ≤ exp

(
− x2

2K2

)
∀x ⩾ 0. (i.a)

P {|X| ≥ x} ≤ 2 exp

(
− x2

2K2

)
∀x ⩾ 0. (i.b)

ii. Subgaussian moment growth:
E1/p|X|p ≤ K

√
p ∀p ⩾ 1. (ii)

iii. Subgaussian MGF:

MX(λ) ⩽ exp

(
K2λ2

2

)
∀λ ∈ R. (iii)

Then (i.b) =⇒ (ii)
if E[X]=0

=⇒ (iii) =⇒ (i.a). All these implications hold with a constant-factor distortion of K.

Before we prove the theorem, we introduce a simple lemma that generalizes the identity for X ⩾ 0:

E[X] =

∫ +∞

0

ΦX(u)du.

Lemma 2.1 (Stack-up identity). If X is absolutely continuous and nonnegative, for any p ⩾ 1 one has

E[Xp] =

∫
R+

pup−1ΦX(u)du.

Exercise 2.1. Prove Lemma 2.1 for p ∈ N. Draw a picture for p = 1.

Proof of Proposition 2.1

1o: (iii) =⇒ (i.a). We have already proved this: see Eq. (5) in the previous lecture. Indeed, to prove those
bounds for N (0, 1) we only used the information about N (0, 1) contained in its MGF, and nothing more.

2o: (i.b) =⇒ (ii). By homogeneity, we can assume that (i.b) holds with K = 1/
√

2 and verify that (ii) then
follows with some K = c > 0. By Lemma 2.1 applied to the random variable |X|, (i.b) with K = 1/

√
2 gives

E[|X|p] =

∫ +∞

0

pup−1P {|X| ≥ u} du ⩽ 2

∫ +∞

0

pup−1 exp
(
−u2

)
du

⩽
∫ +∞

0

pv
p
2−1 exp (−v) dv = pΓ(p/2)

where we used the definition of Gamma function. Now, we only consider the case of even p, leaving the
general case as an exercise. Here, Γ(p2 ) = (p2 − 1)! and it remains to use that n! ⩽ nn. Indeed, this implies

E1/p[|X|p] ⩽ p1/p
(p

2

) 1
2

⩽
√
p.
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3o: (ii) =⇒ (iii) assuming that E[X] = 0. This part is a bit more tedious than the others. On the one hand,

MX(t) = E[etX ] = 1 + tE[X]︸ ︷︷ ︸
=0

+

∞∑
k=2

tk

k!
E[Xk]

⩽ 1 +

∞∑
k=2

tk

k!
E[|X|k]

⩽ 1 +

∞∑
k=2

tkkk/2

k!

where in the last step we used (ii) with K = 1. Now, recall that the trivial bound n! ⩽ nn admits the
companion lower bound (Stirling’s approximation):(n

e

)n
⩽ n! ⩽ nn.

(Actually, the lower bound is way tighter here.) From the lower bound and the previous calculation, we get

MX(t) ⩽ 1 +

∞∑
k=2

(
et√
k

)k
.

On the other hand, by the upper bound one has, for any c, t > 0

exp
(
c2t2

)
= 1 +

∞∑
m=1

(ct)2m

m!
⩾ 1 +

∞∑
m=1

(
ct√
m

)2m

⩾ 1 +
∑

k=2m,m∈N

(√
2ct√
k

)k
.

One can show (do this!) that, for c large enough, the sum over odd k is dominated by that over even k.

3 Monotonicity of Lp-norms

Recall that the Lp-norm of a univariate distribution X ∈ R is ∥X∥Lp
:= E1/p[|X|p]. (Verify this is a norm!)

Remark. Note that for a random variable X with E[X] = 0, the subgaussian parameter is lower-bounded,
up to a constant factor, with its standard deviation σ := E1/2[X2]. Indeed, by Proposition 2.1, one has

K ≳ sup
p∈N

{
1
√
p
∥X∥Lp

}
⩾

σ√
2
.

Exercise 3.1. Show that the Lp-norms are nondecreasing in p, i.e. ∥X∥Lp
⩽ ∥X∥Lq

for 1 ⩽ p ⩽ q ⩽ +∞.

Remark. One might (and should!) get confused here upon remembering that the usual ℓp-norms ∥·∥p on Rn

are nonincreasing in p, i.e. ∥x∥p ⩾ ∥x∥q whenever p ⩽ q. There is no mistake here: by Hölder’s inequality,

∥x∥q ⩽ ∥x∥p ⩽ n
1
p−

1
q ∥x∥q. (11)

for 1 ⩽ p ⩽ q ⩽ +∞, so that the power in the right-hand side is nonnegative. This implies the result of
Exercise 3.1 for uniform distribution with n outcomes, i.e. on {y1, . . . , yn}. In general, for 1 ⩽ p ⩽ q ⩽ +∞,(∫

Ω

dµ

)1/p

∥f∥Lp(µ) ⩽

(∫
Ω

dµ

)1/q

∥f∥Lq(µ)

for any measurable space (X ,F , µ) and µ-measurable function f , with µ not necessarily a probability measure.
The case of counting measure gives us (11), and that of a probability measure gives Exercise 3.1. This also
shows that ∥ · ∥Lp(ν) norms are generally incomparable when ν(Ω) = ∞, e.g. when ν is a Lebesgue measure.
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4 Interlude: Hamburger’s moment problem

In the exercise below, you shall explore the problem of recovering a distribution from its moment sequence.
In the case X ∈ R+, this is called Hamburger’s moment problem, and for X ∈ R it’s the Stieltjes problem.

Exercise 4.1. Show that one can recover a distribution X on R+ from the sequence mk = E[Xk], k ∈ N of
its moments. In other words, for any sequence m1,m2, ... ∈ R+, there is a unique continuously differentiable
nonincreasing Φ : R+ → [0, 1] such that Φ(0) = 1, limx→+∞ Φ(x) = 0, and

∫
R+

ukdΦ(u) = mk for k ∈ N.

1. First assume the bounded case, i.e. that there exists some B such that mk ⩽ Bk for all k ∈ N.
2. Approximate the integral with a finite sum with step 1/N , for N large enough, replacing Φ
with its piecewise constant approximation (which can be considered a finite-dimensional vector).
3. Write down each condition mk =

∫
R+

... as a linear equation for this vector, and interpret the

resulting sequence of conditions as a linear system.
4. The system matrix is a Vandermonde one: Vjk = xj

k. Use the classical result for V ∈ CN×N :

det(V ) =
∏

1⩽i<j⩽n

xi − xj ,

In particular V is nonsingular if and only if xi ̸= xj for i ̸= j.
5. Conclude with a boring approximation argument, showing that things will work out as N → ∞.

Summary. The key takeaway from this lecture: we have provided different equivalent characterizations of
subgaussian distributions on R. In the next lectures, we shall (a) generalize the subgaussian behavior in the
framework of Orlicz norms; (b) extend these notions to multivariate disributions (a.k.a. random vectors).
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Lecture 3: Briefly on Orlicz norms

Disclaimer. In this brief lecture, we first introduce the ∥ · ∥ψ2 -norm (or subgaussian norm) for univariate
distributions; this gives a convenient formalism that will accommodate random vectors in the next lecture.
Then we shall discuss an extension of ∥ · ∥ψ2

-norm to so-called Orlicz norms; this is supplementary material.

1 Subgaussian norm, a.k.a. ψ2-norm

For what follows, and especially when dealing with the maxima of random processes, it is convenient for us to
use the formalism of Orlicz norms. We do not give a general definition here; instead, we only define ψ2-norm
and later ψ1-norm. For a deeper treatment of the subject, refer to David Pollard’s online lecture notes [Pol].

Definition 2 (Subgaussian norm). Given a distribution X ∈ R, its ψ2-norm (or subgaussian norm) is

∥X∥ψ2
:= inf

{
K ⩾ 0 : E

[
exp

(
|X|2

K2

)]
⩽ 2

}
.

From this definition and Proposition 2.1 of the previous lecture, we see that the terminology is consistent: up
to a universal constant, ∥X∥ψ2 is the subgaussian parameter of X. Moreover, ∥ · ∥ψ is indeed a norm on the
vector space of random variables on the same probability space: one has symmetry ∥−X∥ψ2 = ∥X∥ψ2 , positive
homogeneity ∥λX∥ψ2

= |λ| ∥X∥ψ2
, and subadditivity a.k.a. triangle inequality: ∥X+Y ∥ψ2

⩽ ∥X∥ψ2
+∥Y ∥ψ2

.

Exercise 1.1. Show that ∥X + Y ∥ψ2 ⩽ ∥X∥ψ2 + ∥Y ∥ψ2 and exemplify (X,Y ) ∈ R2 that attain the equality.

2 General Orlicz norms

Here we briefly discuss general Orlicz norms ∥ · ∥ψ2 . For more on this, see [Pol90, BK00] and [KC18, Sec. 3].

Definition 3. Function ψ : R+ → R+ is a Young function if it is convex, increasing, and such that ψ(0) = 0.

Exercise 2.1. Verify the following properties of Young functions:

• Super-additivity:
ψ(a+ b) ⩾ ψ(a) + ψ(b) ∀a, b ∈ R+.

• Super-homogeneity:
ψ(λx) ⩾ λψ(x) ∀λ ⩾ 1.

Note that for λ ∈ N this follows from super-additivity.

You may assume ψ is C2(R+) (by Alexandrov’s theorem, ψ is C2 almost everywhere on R+).

Definition 4. Given a Young function ψ, the corresponding Orlicz norm of a random variable X ∈ R is

∥X∥ψ := min

{
K > 0 : E

[
ψ

(
|X|
K

)]
⩽ 1

}
.

One may show that any Orlicz norm is, actually, a seminorm over the sigma-algebra of random variables
on a common probabilty space; moreover, it is a norm when ψ is strictly convex. Consistently with our
previous notation, the subgaussian norm ∥·∥ψ2 is actually the Orlicz norm corresponding to ψ2(x) := ex

2 −1,
which is a legitimate Young function. Now, recall that the expected maximum of N random variables with
subgaussian norm K grows at worst as K

√
log(N + 1), i.e. as ψ−1

2 (N). This generalizes to all Orlicz norms:

Proposition 2.1. Given an Orlicz norm ∥ · ∥ψ, let Xj ∈ R be such that ∥Xj∥ψ ⩽ Kj for all j ∈ [N ]. Then

E

[
max
j∈[N ]

|Xj |
]
⩽ ψ−1(N) max

j∈[N ]
Kj .

Exercise 2.2. Prove Proposition 2.1. It suffices to show that E
[
maxj∈[N ] |Zj |

]
⩽ ψ−1(N) when ∥Zj∥ψ ⩽ 1.
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3 Interlude: ψα-norms and sub-Weibull distributions

This material is supplementary; it shall also be used in a later-on, in the context of estimating higher-order
moment tensors (which is also a supplementary topic). For any α ⩾ 1, consider the function ψα : R+ → R+,

ψα(x) := exp(xα) − 1.

These are Young (and strictly convex, in fact), and we already know that α = 2 gives the subgaussian norm.
In Lecture 6: Section 1 we shall consider the so-called subexponential or ∥·∥ψ1

-norm, corresponding to α = 1.
From these definitions, it is clear that |X2|ψ1 = ∥X∥2ψ2

, so ∥·∥ψ1 naturally arises in the context of controlling

linear combinations of the squares of independent subgaussians (a.k.a. χ2-type statistics). Deferring further
discussion to Lecture 6: Section 1, let us only remark here that, naturally, one would hope to use “ψα-norm”
with α < 1 to the p > 2 power of a subgaussian, as

|Xp|ψ2/p
= ∥X∥pψ2

,

where one could take exp(xα)−1 in the role of ψα(x), for any α > 0 (as already done for α ⩾ 1). Yet, there is

a technical issue: for α ∈ (0, 1), the function ψ̃α(x) := exp(xα)− 1 on R+ is nonconvex (and so not a Young

function). Fortunately, inspection shows that ψ̃′′
α(x) ⩾ 0 for x large enough. This suggests to adjust ψ̃α via

linear interpolation near the origin, and contextualizes the following exercise.

Exercise 3.1. For α ∈ (0, 1), define the threshold xα = α−1/α and the following function ψα : R+ → R+:

ψα(x) := exp(xα)1x⩾xα
+
e1/α

xα
x1x<xα

. (12)

For intuition, plot ψ1/2 and ψ̃1/2 in one plot. Show the following properties of ψα for all α ∈ (0, 1).

1. ψα is C1-smooth and is a Young function.

2. ψα(xα) = exp(xαα) and ψ′
α(xα) = exp(xα)′|x=xα . For all x, t ∈ R+, one has

exp(xα) − 1 ⩽ ψα(x) ⩽ exp(xα),

log1/α(t) ⩽ ψ−1
α (t) ⩽ log1/α(t+ 1).

Hint 1: for the upper bound in the first line, study the monotonicity of x exp(−xα) on x ∈ (0, xα).

Hint 2: for the lower bound in the first line, study the monotonicity of e
1/α

xα
x− exp(xα) on x ∈ (0, xα).

Hint 3: the second line follows from the first line (draw a plot).

Exercise 3.2 (Sub-Weibull distributions). Define X to be (K,α)-sub-Weibull if it holds that

E

[
exp

(
|X|α

Kα

)]
⩽ 1.

1. Using the results of Exercise 3.1, conclude that if X is (K,α)-sub-Weibull, then ∥X∥ψα ⩽ K.

2. Using the results of Exercise 3.1 and Proposition 2.1, conclude that if each Xj is (Kj , α)-sub-Weibull,

E

[
max
j∈[N ]

|Xj |
]
⩽ log1/α(N + 1) max

j∈[N ]
Kj .

3. Clearly, power p of a σ-sub-Gaussian random variable is (K,α)-sub-Weibull with K = σp and α = 2
p .

Show the near-converse: if ∥X∥ψα ⩽ K (in particular if X is (K,α)-sub-Weibull), then for any p ⩾ 0

∥Xp∥ψα/p
⩽ (1 + 1α<1)Kp,

In particular, power α
2 of an α-sub-Weibull random variable is subgaussian. Hint: use super-additivity.
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Lecture 4: Subgaussian random vectors and concentration

Disclaimer. This lecture covers [Ver12, Lemma 5.39] but also discusses some tangentially related topics.
We shall first observe that jointly independent subgaussian random variables remain subgaussian under linear
combinations. This property mimics that of the Gaussian class of distributions. We shall then use these
results to introduce—and then investigate—the natural class of subgaussian random vectors, for which we
shall prove an approximate rotation invariance property – which mimicks the rotation invariance of N (0, 1).

1 Linear combinations of independent subgaussian random variables

Recall from the last lecture that a distribution X ∈ R is K-sub-Gaussian if its MGF MX(t) := EetX satisfies

MX(t) ⩽ exp
(
t2K2/2

)
∀t ∈ R.

Then, for some c > 0 the tail function ΦX(x) = P{X ⩾ x} decays as ΦX(x) ⩽ exp(−cx2K−2) on R. Let us
now consider the product-distribution setup: X1, X2, . . . , Xn are jointly distributed on R and independent.
That is, the random vector X1:n := (X1, . . . , Xn) ∈ Rn has a product distribution: f1:n(x1:n) =

∏
i∈[n] fi(xi)

where x1:n := (x1, . . . , xn) is a candidate value of X1:n, f1:n is the p.d.f. of X1:n, and fi is the p.d.f. of Xi.

Proposition 1.1 (Sums of independent subgaussians are subgaussian). Let Sn :=
∑n
i=1Xi, where each Xi

is Ki-subgaussian, and X1, . . . , Xn are independent. Then Sn is subgaussian with parameter (
∑n
i=1K

2
i )1/2.

Proof. We have already seen this in Lecture 1: Eq. (3) for two random variables; here is the general case:

MSn
(t) := E

[
exp

(
t

n∑
i=1

Xi

)]
(∗)
=

n∏
i=1

E [exp (tXi)] ⩽
n∏
i=1

exp

(
1

2
t2K2

i

)
= exp

(
1

2
t2

n∑
i=1

K2
i

)
,

Here in (∗) we used independence of the random variables exp(tXi), which are independent since Xi’s are.

A simple check shows that subgaussianity is a positive-homogeneous property: X ∈ R is K-subgaussian
if and only if λX is λK subgaussian for any λ > 0. More generally, if |X| is K-subgaussian if and only
if |λX| is |λ|K-subgaussian for any λ ∈ R. Together with the previous result, this implies the following one.

Corollary 1.1. Let X := X1:n ∈ Rn be a random vector with independent entries, |Xi| being Ki-subgaussian.
Then, for any fixed vector a ∈ Rn, the linear combination ⟨a,X⟩ =

∑
i∈[n] aiXi is K-subgaussian, with

K =

 n∑
i∈[n]

a2iK
2
i

1/2

.

We have just seen that all one-dimensional marginals ⟨a,X⟩ of a random vector X with independent
subgaussian entries turn out to be subgaussian as well, with variance proxies depending on a in a quantifiable
manner. However, entrywise independence is a very strong assumption. In the sequel, we relax it by ”hard-
wiring” the subgaussian behavior of one-dimensional marginals into the definition of subgaussianity in Rd.

2 Subgaussian random vectors

Definition 5. A random vector X ∈ Rd is called K-subgaussian, denoted ∥X∥ψ2
≤ K, if its one-dimensional

marginal ⟨X,u⟩, for any unit-norm vector u, is a K-subgaussian random variable. In other words, one has

sup
u∈Sd−1

∥⟨X,u⟩∥ψ2 ≤ K

with Sd−1 := {u ∈ Rd : ∥u∥2 = 1}. Equivalently, X is K-subgaussian if ∥⟨X,w⟩∥ψ2
≤ K∥w∥2 for all w ∈ Rd.
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Definition 6. The ψ2-norm of X ∈ Rd is defined as the largest ψ2-norm of its one-dimensional projections:

∥X∥ψ2
:= sup

u∈Sd−1

∥⟨X,u⟩∥ψ2
.

Recall that X ∼ N (0, Id) is rotationally invariant: for any (deterministic) orthogonal matrix Q ∈ Rd×d,
i.e. such that QQ⊤ = Q⊤Q = Id, the vector QX ∼ N (0, Id) as well; in particular, one has ⟨u,X⟩ ∼ N (0, 1)
for any u ∈ Sd−1. As the next result shows, this property approximately generalizes to subgaussian vectors.

Proposition 2.1 (Approximate rotational invariance of subgaussian random vectors2). For some univer-
sal c > 0, if the entries of X ∈ Rd are independent and K-subgaussian then X is K-subgaussian.

Proof. Observe that this claim is nothing else but a reformulation of Corollary 1.1.

Remark (Orlicz norms for vectors). Of course, one can extend Orlicz norms to multivarite distributions in
the same fashion: given a Young function ψ, the corresponding Orlicz norm of a random vector X ∈ Rd is

∥X∥ψ := sup
u∈Sd−1

∥⟨X,u⟩∥ψ.

We shall use this later, in particular in the lectures devoted to χ2-type statistics and covariance estimation.

3 Inequalities due to Hoeffding and Khinchine

Applying Proposition 2.1 again to convert an MGF bound to a tail bound, we arrive at Hoeffding’s inequality.

Proposition 3.1 (Hoeffding’s inequality). Let {Xi}ni=1 be a a sequence of independent random variables
such that each Xi is sub-Gaussian with parameter Ki. Then, for any ε ⩾ 0,

P

{
n∑
i=1

(Xi − EXi) ⩾ ε

}
⩽ exp

(
− ε2

2
∑n
i=1K

2
i

)
.

On the other hand, we also have a bound for the Lp-norms ∥Y ∥Lp
:= E1/p[|Y |p] of a linear combination.

Proposition 3.2 (Khintchine’s inequality). Let X1, X2, . . . , Xn be a sequence of independent, K-subgaussian
random variables such that E[Xi] = 0 for all i ∈ [n]. Then, for any p ⩾ 1, it holds that∥∥∥∥∥

n∑
i=1

wiXi

∥∥∥∥∥
Lp

≲ K
√
p∥w∥2.

Remark. Assuming E[X2
i ] = 1, the bound is sharp for p = 2: ∥

∑n
i=1 wiXi∥L2

=
√∑n

i=1 w
2
iE[X2

i ] = ∥w∥2.

2Our terminology follows Vershynin’s [Ver12]: he defined ∥ · ∥ψ2
via moments rather than MGF, so his version of this

proposition has distortion of K by a constant factor due to using Proposition 2.1. In our case, ”approximate” can be dropped.
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Lecture 5: Gaussian maxima and weighted union bounds

Disclaimer. In this lecture, we focus on the classical topic of controlling the uniform norm of a Gaussian
vector. The subgaussian case is considered only briefly: the upper bounds extend from the Gaussian case,
but not the lower bounds. We also discuss possible refinement of these bounds, leading to an open problem.

Throughout, we assume ξ ∈ Rn is standard Gaussian: ξ ∼ N (0, In). Then X = Aξ, for a fixed A ∈ Rm×n,
is also Gaussian, namely X ∼ N (0,Σ) with Σ = AA⊤. We shall focus on bounding the sup-norm of X, i.e.

∥X∥∞ = ∥Aξ∥∞ = max
j∈[m]

|a⊤j ξ|

where a⊤j are the rows of A, and Xj = a⊤j ξ are the entries of X.

1 Diagonal case

We start with the case A = σIn. Recall that Lecture 2: Proposition 2.2 implies that, w.p. ⩾ 1 − δ, one has

∥X∥∞ ⩽ σ
√

2 log (2nδ−1). (13)

Let us repeat the argument explicitly: ∥X∥∞ is the maximum of n random variables |Xj |, Xj ∼ N (0, σ2), so

P {∥X∥∞ ⩾ r} ⩽
∑
j∈[n]

P {|Xj | ⩾ r} = 2nΦ(r/σ)

by the union bound. Plugging in the Gaussian tail bound Φ(r/σ) ⩽ exp(− r2

2σ2 ) of the MGF method, and

solving the equation 2n exp(− r2

2σ2 ) = δ for r = r(δ), we arrive at (13). Note that we have never used that Xj ’s
are independent, and the bound does not require this. However, when Xj are highly dependent, it might
“overshoot:” indeed, for X1 = ... = Xn ∼ N (0, σ2) we get P{∥X∥∞ ⩾ r} = P{|X1| ⩾ r} = 2Φ(r/σ), that is

∥X∥∞ ⩾ σΦ−1( 1
2δ)

with probability 1 − δ. By Lecture 2: Exercise 2.5, this in particular implies that with probability ⩾ 1 − δ,

∥X∥∞ ⩾ σ
√

2 log(cδ−1) as long as δ ⩽ c0 < 1.

Note that regardless of the interdependence of Xj ’s, this gives a (trivial) lower bound for the (1− δ)-quantile
of ∥X∞∥. On the other hand, in the case of independent entries, the upper bound (13) turns out to be tight.

Proposition 1.1. Assume that X ∼ N (0, σ2In), then for some constants c, c0, c1 > 0, with probability ⩾ 1−δ

∥X∥∞ ⩾ σ
√

2 log (cnδ−1)

(
1 +

1 + log log(2n)

2 log(2n)

)−1

(14)

as long as n ⩾ 2 and δ−1 ⩾ c0 log(2n)1+c1 .

The proof of this proposition is technical, was omitted in class, and can be skipped at first (see Section 4).

Remark. In the above argument, the key idea is to use the “second level” of the inclusion-exclusion formula.

Executive summary. What we have so far: if Xj ∼ N (0, σ2) marginally for all j ∈ [n], then the bounds

σ
√

2 log(2δ−1) ⩽ ∥X∥∞ ⩽ σ
√

2 log(2nδ−1) (15)

hold with probability ⩾ 1 − δ each (albeit with the lower bound restricted to δ ⩽ c0 < 1). Both these
bounds can actually be (nearly) attained: the lower one when Xj ’s are equal, and the upper one when they
are independent. Note also that the upper bound extends to the subgaussian case, since it only used the
MGF bound for the tail function. (This cannot be said about the lower bounds; yet, one can furnish natural
analogues of the corresponding results, expressed in terms of the quantile function of the entries Xj of X.)
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2 General case: vanilla union bound

For A = [a⊤1 ; · · · ; a⊤m], we let σj := ∥aj∥2 and note that Xj = a⊤j ξ ∼ N (0, σ2
j ). Clearly, (15) generalizes to

Proposition 2.1. Let A ∈ Rm×n, with σj being the norm of jth row. Each of the following holds w.p. ⩾ 1−δ:

max
j∈[m]

σj
√

2 log(2δ−1) ⩽ ∥X∥∞ ⩽ max
j∈[m]

σj
√

2 log(2mδ−1). (16)

Here, the upper bound is valid for any δ ∈ (0, 1), and the lower bound is restricted to δ ∈ (0, c0] with c0 < 1.

Proof. For the upper bound, proceeding as in the proof of (13) we get

P {∥X∥∞ ⩾ r} ⩽
∑
j∈[m]

P {|Xj | ⩾ r} = 2
∑
j∈[m]

Φ(r/σj) ⩽ 2m max
j∈[m]

Φ(r/σj) ⩽ 2m max
j∈[m]

exp

(
− r2

2σ2
j

)

= 2m exp

(
− r2

2 maxj∈[m] σ
2
j

)
.

For the lower bound, we proceed as in the diagonal case but choose the “worst” Xj to get maxj∈[m] σj .

Note that there is an O(
√

logm) additive gap between the upper and lower quantile bounds in (16). This
is rather crucial: the two bounds become of the same order only in the high-confidence regime: δ = O(m−1).
Our subsequent discussion is focused on narrowing it down. The first suggestion is a simple and cute trick.

3 Refinement via weighted union bound

Perhaps somewhat surprisingly, it turns out that there is a computationally cheap way to universally improve
the upper bound in (16). Even more surprising is the fact that this trick seems to be inpublished, and even
some experts in the field are unaware of it, as learned from personal interaction with them. Here is the idea:

When taking the union bound, one can distribute the ”budget” δ over the probabilities pj of the
violation events nonuniformly, so as to minimize the resulting upper bound on the quantile.

To make this precise, note that each of the events

Ej :=

{
|Xj | > σj

√
2 log

(
2

δj

)}
holds with probability at least 1 − pj . Hence, for any selection of δj ’s such that

∑
j δj = δ, one has

∥X∥∞ ⩽ max
j∈[m]

σj

√
2 log

(
2

δj

)
holds w.p. ⩾ 1− δ. If we define pj := δj/δ, computing the tightest of these upper bounds amounts to solving

Qδ := min
p∈∆m

max
j∈[m]

σj

√
2 log

(
2

δpj

)
︸ ︷︷ ︸

qδ(p)

.

Minimization is on the standard simplex ∆m := {p ∈ Rd+ : p⊤1m = 1}, and qδ(p) is convex on Rd+ due to the
convexity of − log(·) on R+, so this is a convex optimization problem . This improves over Proposition 2.1:

Qδ ⩽ qδ(
1
m1m) = max

j∈[m]
σj
√

2 log(2mδ−1). (17)

Computationally, the improvement comes for free: as the next exercise shows, one can compute Qδ explicitly.
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Exercise 3.1. Let Sm :=
∑
j∈[m] σ

2
j and Mm = maxj∈[m] σ

2
j . Show the following.

1. It holds that

1
2Q

2
δ ⩽

1
2Q

2
δ := max

j∈[m]
σ2
j log

(
2Sm
δσ2
j

)
.

Hint: choose p ∈ ∆m appropriately.

2. “Softmax inequality” states that, for any x ∈ Rm and β ∈ R,

max
j∈[m]

xj ⩽
1

β
log
∑
j∈m

exp (βxj) ⩽ logm+ max
j∈[m]

xj .

The lower bound is trivial; the upper is Jensen’s. Use it to verify that 1
2Q

2
δ ⩽Mm log( 2m

δ ).

3. Show that for δ ⩽ 2e−1, one has

1
2Q

2
δ = Mm log

(
2Sm
δMm

)
.

Exercise 3.2 (Further refinement).

1. Find β ∈ R that minimizes the right-hand side in the (obviously correct) inequality

1
2Q

2
δ ⩽ max

j∈[m]
σ2
j log

(
2
∑
k∈[m] e

−βσ2
k

δe−βσ
2
j

)
.

2. Find 1
2Q

2
δ explicitly. Hint: use that maxj∈[m] fj = maxλ∈∆m

∑
j∈[m] λjfj to express 1

2Q
2
δ as the value of

a convex-concave min-max problem; then use Sion’s minimax theorem [Kin05] to switch min and max.

4 Interlude: proof of Proposition 1.1

Note that |X1|, . . . , |Xn| are jointly independent, so for any fixed level r > 0, the “violation events”

Ej := {|Xj | ⩾ r}

are independent as well, and

P {∥X∥∞ ⩾ r} = P

 ⋃
j∈[n]

Ej

 ⩾
∑
j∈[n]

P (Ej) −
∑

1⩽j<k⩽n

P(Ej ∩ Ek) =
∑
j∈[n]

pj −
∑

1⩽j<k⩽n

pjpk

where pj := P(Ej) is the probability of jth violation event; in the inequality we used the ”second level” of
the inclusion-exclusion formula, and the last identity is by the independence of Ej and Ek. Whence we get

P {∥X∥∞ ⩾ r} ⩾
∑
j∈[n]

pj

(
1 − 1

2

∑
k ̸=j

pk

)
⩾

( ∑
j∈[n]

pj

)(
1 − 1

2

∑
j∈[n]

pj

)
= 2nΦ(r/σ) (1 − nΦ(r/σ)) .

For r ⩾ σ
√

2 log(2n), one has Φ(r/σ) ⩽ exp(− r2

2σ2 ) ⩽ 1
2n , and therefore

P {∥X∥∞ ⩾ r} ⩾ nΦ(r/σ) ⩾
σn

r
√

2π

(
1 − σ2

r2

)
exp

(
− r2

2σ2

)
⩾
cσn

r
exp

(
− r2

2σ2

)
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for a universal constant c > 0. Assigning the left-hand side to δ and taking the logarithm, this translates to

r2

2σ2
+ log

( r
σ

)
⩾ log(cnδ−1),

where r = r(δ) is the (1−δ)-quantile of ∥X∥∞. Now, to handle the correction term, note: if r ⩾ σ
√

2 log(2n),

r2

2σ2
+ log

( r
σ

)
=

r2

2σ2

(
1 +

2σ2 log (r/σ)

r2

)
⩽

r2

2σ2

(
1 +

log(
√

2 log(2n))

log(2n)

)
⩽

r2

2σ2

(
1 +

1 + log log(2n)

2 log(2n)

)
.

This gives (14), so it only remains to verify that our standing assumption r ⩾ σ
√

2 log(2n) is fulfilled

whenever δ−1 ⩾ c0 log2(2n). To this end, squaring (14) and using the assumption on δ, we get

r2

σ2
⩾ 2 log(cnδ−1)

(
1 +

log(2 log(2n))

2 log(2n)

)−2

⩾ 2 log(2n)

(
1 +

log( c2δ
−1)

log(2n)

)(
1 +

log(2 log(2n))

2 log(2n)

)−2

⩾ 2 log(2n)

(
1 +

log( c2δ
−1)

log(2n)

)(
1 +

(1 + c1) log(2 log(2n))

log(2n)

)−1

⩾ 2 log(2n) once log
(
c
2δ

−1
)
⩾ (1 + c1) log(2 log(2n)).

5 Challenge: tractable approximation of Gaussian volume (and quantiles)

For general matrix A, we still have a gap between upper and lower bounds, namely

∥σ⃗2∥∞ log(2δ−1) ⩽ 1
2Q

2
δ ⩽ ∥σ⃗2∥∞ log

(
2δ−1r(A)

)
,

where Qδ is the 1 − δ quantile of ∥X∥∞, and

r(A) =
∥σ⃗2∥1
∥σ⃗2∥∞

=
∥A∥22,2
∥A∥22,∞

can be thought of as (some version of) the effective rank ofA. In general, the best we can say is that r(A) ⩽ m.
Which leads us to the following problem:

Tractable quantiles for Gaussian maxima. Given δ ∈ (0, 1), A ∈ Rm×n, and ε ∈ (0, 1),
approximate Qδ(A), the (1− δ)-quantile of ∥X∥∞ with relative error ε, i.e. find Q̂δ(A) such that

(1 − ε)Q̂δ(A) ⩽ Qδ(A) ⩽ (1 + ε)Q̂δ(A).

This has to be done via a tractable method, with complexity polynomial in m,n, 1/δ and log(1/ε).

Equivalent formulation in terms of Gaussian volume. Note that the inverse map for rA(1 − δ) :=
Qδ(A) is the probability that ∥Aξ∥∞ ⩽ r, i.e., the Gaussian volume γn(P ) := P{ξ ∈ P} of the polytope

P = Pr(A) := {u ∈ Rn : |a⊤j u| ⩽ r ∀j ∈ [m]},

as a function of its “radius” r. As such, we reduce the above problem to the problem of approximating
the Gaussian volume of a symmetric convex polytope in Rn with 2m facets, for which the normal vectors
are ±aj . 3 In fact, there are general algorithms to approximate γn(P (A)) via sampling; the fastest one

3As it stands, the above problem asks to compute r > 0 such that, for the scaled polytopes Pr−εr(A) and Pr+εrA, one has

γn(Pr−εr(A)) ⩽ 1− δ ⩽ γn(Pr+εr(A)).

However, if we can approximate γn(Pr(A)) up to error ∆ in poly(1/∆)—as is the case e.g. for sampling algorithms [CV14]—then
the standing problem can be solved via binary search, with log(1/ε) overhead. This motivates shooting for log(1/ε) complexity.
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running in O(n3) [CV14] in Õ(n3) in the regime m ⩾ n. On the other hand, exact computation of ordinary
volume

∫
1A(u)du is nothing else but the computation of det(A), and so cannot be done faster than in

the matrix inversion time nω. Nevertheless, it is an interesting problem to get a deterministic method
for efficiently approximating γn(P (A)). The only known result in this avenue seems to be [BR24], which
gives an approximation up to O(1)n factor. Even an O(1)-approximation algorithm, or more precisely with
any ε≪ log(m), would be desirable. Below we give some preliminary ideas of one such promising approach.

Approach via the inclusion-exclusion formula Let Ej := {|Xj | > rj} be the violation events, then

P

 ⋃
j∈[m]

Ej

 =
∑
k∈[m]

(−1)k−1Pk

where
Pk :=

∑
1⩽j1<···<jk⩽m

P (Ej1 ∩ · · · ∩ Ejk)

is the sum over k-tuples, and we have inequalities cutting the decomposition at any level k. In particular,

P

{
∥X∥∞ > max

j∈[m]
rj

}
⩽ P

 ⋃
j∈[m]

Ej

 ⩽ P1 − P2 + P3

where the first inequality follows from the fact that
maxj aj
maxj bj

⩽ maxj
aj
bj

for any aj , bj > 0. (Check this!) Now,

P1 =
∑
j∈[m]

P(Ej) := δ
∑
j∈[m]

pj ,

where we defined pj := δ−1
j P(Ej), with δ ∈ (0, 1) being a parameter. Moreover, we can upper-bound the

next term −P2 in terms of pj ’s via the Gaussian correlation inequality.

Theorem 5.1 (e.g. [LM17]). For any convex, compact, and symmetric sets K,L ⊆ Rn, one has

γn(K ∩ L) ⩾ γn(K)γn(L).

This bound is sharp, proved in the general case by Thomas Royen a few years ago [Roy14]. In our case,
we can invoke it with K and L being symmetric slabs (this has been done in 1960s [Šid67]), to conclude that

−P2 = −
∑

1⩽j1<j2∈m

P (Ej1 ∩ Ej2) ⩽ −δ2
∑

1⩽j1<j2⩽m

pj1pj2

That is, P1 −P2 ⩽ δe1(p1, . . . , pm)− δ2e2(p1, . . . , pm) where ek is the kth elementary symmetric polynomial;

P

{
∥X∥∞ > max

j∈[m]
rj

}
⩽ δe1(p1, . . . , pm) − δ2e2(p1, . . . , pm) + δ3TA(r1, · · · , rm),

and TA(r1, . . . , rm) = δ−3P3 as the function of r1, . . . , rm. As before, one has δpj = 2Φ(rj/σj) ⩽ 2 exp
(
− r2j

2σ2
j

)
,

with a nearly matching lower bound when δ ⩽ c < 1.

1
2Q

2
δ ⩽ min

p∈∆̂m(δ)

{
1
2q

2
δ (p) := max

j∈[m]
σ2
j log

(
2

δpj

)}
(18)

where the set

∆̂m(δ) := {p ∈ Rm+ : 1 = e1(p1, . . . , pm) − δe2(p1, . . . , pm) + δ2TA(σ1Φ−1( δ2p1), . . . , σmΦ−1( δ2pm))}, (19)

can be thought of an approximation of the simplex; in particular, ∆̂m(0) = ∆m. Here are some questions:
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1. Can one compute TA(r1, . . . , rm) efficiently? Note that

δ3TA(r1, . . . , rm) =
∑

1⩽j1<j2<j3⩽m

P(Ej1 ∩ Ej2 ∩ Ej3),

where each term P(Ej1 ∩Ej2 ∩Ej3) depends only on some triple aj1 , aj2 , aj3 and r1, r2, r3. Explicitly,

P(E1 ∩ E2 ∩ E3) = P{|X1| ⩽ r1, |X2| ⩽ r2, |X3| ⩽ r3} where (X1, X2, X3) ∼ N (0,Σ{1,2,3})

and ΣJ = ΠJAA
⊤ΠJ is a |J |× |J | submatrix of Σ = AA⊤. P(E1 ∩E2 ∩E3) can be computed in O(1).

2. What can be said about the geometry of ∆̂m(δ)? Note that for ψδ(p) := e1(p1, . . . , pm)−δe2(p1, . . . , pm),

ψδ(p) =
∑
j∈[m]

pj

1 − δ

2

∑
k ̸=j

pk

 ,

∂

∂pj
ψδ(p) = 1 − δ

∑
k ̸=j

pk,

∂2

∂pj∂pk
ψδ(p) = −δ1j ̸=k.

It might be helpful to change the parametrization back to r1, . . . , rm.

3. How much tighter is (18) compared to (??)?

4. Finally, it seems that the complexity of solving (18) is ∼ m3, whereas the sampling approaches are ∼ n3.
Can we somehow “sketch” the problem to reduce its complexity?
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Lecture 6: Bernstein’s inequality and covariance estimation

Disclaimer. This is our first “data science” lecture: we dicsuss a qualitatively sharp concentration inequal-
ity for the sample covariance matrix of a subgaussian vector (and complete its proof in the next lecture).
This material includes to [Ver12, Theorem 5.39], with some additional discussions. Subsequently, this result
will be used in a more applied statistical context, in the analysuis of random-design linear regression and
finite-sample results for generalized linear models.

1 Bernstein’s inequality, a.k.a. the deviations of a χ2-type statistic

We start with a basic result, useful in its own right. Y ∈ R is called K1-subexponential if ∥Y ∥ψ1
⩽ K1 where

∥Y ∥ψ1
:= inf

{
K ⩾ 0 : E

[
exp

(
|Y |
K

)]
⩽ 2

}
.

For example, both χ2
1 and χ2

2 = Exp(1) are O(1)-subexponential (with different but universal constants).
From this definition it is immediately clear that ∥X2∥ψ1

= ∥X∥2ψ2
, i.e. X2 is K2

2 -subexponential if and only
if X is K2-subgaussian. By Lecture 2: Proposition 2.1, ∥Y ∥ψ1 ⩽ K1 implies subexponential moment growth,

∥Y ∥Lp
≲ K1p ∀p ∈ N,

when Y is nonnegative (so that Y = |Y | = X2 for some X). In fact, this implication remains valid in the
general case of K1-subexponential Y , by an argument similar to the one in Lecture 2: Proposition 2.1; and
the reverse implication holds assuming E[Y ] = 0.

Similarly to the subgaussian case, a natural question is how the sum of independent subexponential
random variables deviates from its expectation. It is answered by the following result.

Proposition 1.1 (Bernstein’s inequality). Let W1,W2, . . . be independent, centered, and ∥Wj∥ψ1
⩽ K1.

Then for any deterministic sequence a1, a2, . . . , with probability ⩾ 1 − δ∣∣∑
j ajWj

∣∣ ≲ K1∥a∥2
√

log (δ−1) +K1∥a∥∞ log
(
δ−1
)
.

In particular, for any n ∈ N one has w.p. ⩾ 1 − δ:∣∣∑
j∈[n]Wj

∣∣ ≲ K1

√
n log (δ−1) +K1 log

(
δ−1
)
.

In homework, you proved a version of this result for Wj = Yj − 1 with ∼ χ2
1, cf. [LM00], namely for Y ∼ χ2

n,

|Y − n| ≲
√
n log (δ−1) + log

(
δ−1
)
. (20)

Generalization to subexponential distributions is analogous, since the proof relied on the MGF method. Note
that Proposition 1.1 covers the non-uniform case ∥Zj∥ψ1

⩽ Kj as well: by homogeneity of ∥ · ∥ψ1
, this is

equivalent to ∥ajZj∥ψ1
⩽ K with aj = K

Kj
. Note also that, since ∥·∥ψ1

is a norm on the Borel sigma-algebra,

∥Y ∥ψ1
⩽ ∥Y − E[Y ]∥ψ1

+ |E[Y ]|,
∥Y − E[Y ]∥ψ1

⩽ ∥Y ∥ψ1
+ |E[Y ]|.

This allows to apply Proposition 1.1 to noncentered random variables, as the following simple result shows.

Proposition 1.2. Let Z be zero-mean and K-subgaussian, then W := Z2 −E[Z2] is O(K2)-subexponential.

Proof. ∥Wj∥ψ1
⩽ ∥Zj∥2ψ2

+ VarZj = K2 + VarZj ≲ K2. The last step is by Lecture 2: Proposition 2.1.

In particular, for the χ2-type statistic Sn =
∑
j∈[n] Z

2
j , where Zj ’s are independent, K-subgaussian and

isotropic (i.e. E[Zj ] = 0 and E[Z2
j ] = 1), one has

∣∣ 1
nSn − 1

∣∣ ≲ K2

(√
log (δ−1)

n
+

log
(
δ−1
)

n

)
(21)

with probability ⩾ 1 − δ; here the first term dominates as long as n ⩾ log(δ−1). We shall reuse this result.
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2 Covariance estimation: the result

Recall that the operator (or spectral) norm of A ∈ Rd×d is, by definition,

∥A∥ := sup
u∈Sd−1

∥Au∥2,

where the supremum can instead be taken over the unit ball ∥u∥2 ⩽ 1. Equivalently, ∥A∥ is the largest
singular value of A, and ∥A∥ = max{λmax(A),−λmin(A)} if A is symmetric. Next we’ll prove the following

Theorem 2.1 (cf. [Ver12, Theorem 5.39]). Let Z ∈ Rd be isotropic (E[Z] = 0 and E[ZZ⊤] = I) and K-

subgaussian. Consider a sample Z1, . . . , Zn of independent copies of Z, and define Ĵn := 1
nZjZ

⊤
j , which is

an unbiased estimate of the d×d identity matrix I. Then w.p. ⩾ 1− δ the operator norm of Ĵn−I satisfies

∥∥Ĵn − I∥ ≲ K2

(√
d+ log(δ−1)

n
+
d+ log(δ−1)

n

)
. (22)

In particular, there exists c > 0 such that, for any ε ∈ (0, 1), one has
∥∥Ĵn − I∥ ⩽ ε w.p. ⩾ 1 − δ, as long as

n ⩾ cK4ε−2(d+ log(δ−1)). (23)

This theorem admits the following equivalent formulation (for estimating arbitrary covariance matrices).

Theorem 2.2. Let X ∈ Rd be zero-mean, with covariance matrix E[XX⊤] = Σ ≻ 0, and satisfying the
subgaussian moment comparison assumption

∥⟨X,u⟩∥Lp
⩽ K

√
p∥⟨X,u⟩∥L2

∀u ∈ Sd−1. (24)

Given X1, . . . , Xn ∼iid X, the sample covariance matrix

Σ̂n :=
1

n

∑
j∈[n]

XjX
⊤
j

with probability at least 1 − δ satisfies

∥∥Σ−1/2(Σ̂n −Σ)Σ−1/2
∥∥ ≲ K2

(√
d+ log(δ−1)

n
+
d+ log(δ−1)

n

)
. (25)

In particular, there is c > 0 such that, ∀ε ∈ (0, 1) and when n ⩾ cK4ε−2(d+log(δ−1)), with probability ⩾ 1−δ
one has

∥∥Σ−1/2(Σ̂n −Σ)Σ−1/2
∥∥ ⩽ ε, or equivalently

(1 − ε)Σ ≼ Σ̂n ≼ (1 + ε)Σ.

Exercise 2.1. Show that for A ≻ 0 and B ≽ 0, ∥A− 1
2 (B−A)A− 1

2 ∥ ⩽ ε if and only if (1−ε)A ≼ B ≼ (1+ε)A.
To this end, verify that for symmetric A,B and nonsingular Q with compatible dimensions, it holds that

A ≼ B ⇐⇒ QAQ⊤ ≼ QBQ⊤.

Before we proceed to proving Theorem 2.1, let us verify its equivalence to Theorem 2.2 and discuss the
important topic of linear invariance/equivariance.
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3 Discussion: linear invariance and equivariance

At first glance, the latter theorem seems more general; in particular, it clearly implies the former one, simply
by instantiating Theorem 2.2 for X which is isotropic. But Theorem 2.1, in turn, implies Theorem 2.2.
Indeed, assume X satisfies the premise of Theorem 2.2, i.e. one has E[X] = 0, E[XX⊤] = Σ, and (24); note
that ∥⟨X,u⟩∥L2 = ∥u∥Σ. Now, consider

Z = Σ−1/2X.

Clearly, Z is isotropic (so this is also called “to put X in isotropic position”) and K-subgaussian: indeed,
in (24) one can replace “ ∀u ∈ Sd−1 ” with “ ∀u ∈ Rd ” by homogeneity of Lp-norms. But for any deterministic

vector u ∈ Rd, one has ⟨X,u⟩ = ⟨Z, v⟩ where the transformation u 7→ Σ1/2u is one-to-one. As the result,

(24) ⇐⇒ ∥⟨X,u⟩∥Lp
⩽ K

√
p∥⟨X,u⟩∥L2

∀u ∈ Rd

⇐⇒ ∥⟨Z, v⟩∥Lp
⩽ K

√
p∥⟨Z, v⟩∥L2

∀v ∈ Rd

⇐⇒ ∥⟨Z, v⟩∥Lp
⩽ K

√
p ∀v ∈ Sd−1 ⇐⇒ Z is K-subgaussian,

where the last equivalence is up to a constant-factor distortion of K (by Lecture 2: Proposition 2.1). That
is, X has K-subgaussian moment growth, in the sense of (24), if and only if its isotropic position is K-
subgaussian – and, in fact, if and only if AX has K-subgaussian moment growth for any nonsingular
matrix A ∈ Rd×d. In other words, assumption (24) is invariant w.r.t. nonsingular linear transformations,
a.k.a. with respect to the action of the generalized linear group GL(d,R). On the other hand, it holds that

Ĵn =
1

n

∑
j∈[n]

ZjZ
⊤
j =

1

n

∑
j∈[n]

Σ−1/2XjX
⊤
j Σ

−1/2 = Σ−1/2Σ̂nΣ
−1/2,

so (25) is (22). As such, Theorem 2.1 has the same premise and also the same implications as Theorem 2.2.

4 Left-hand side of (22) as the supremum of a subexponential stochastic process

If A ∈ Rd×d is symmetric, i.e. A⊤ = A, then one can rewrite its operator norm as follows (verify this fact):

∥A∥ = sup
u∈Sd−1

|u⊤Au|.

(The absolute value can be removed if A ≽ 0.) So, ∥Ĵn−I∥ is the supremum of a stochastic process on Sd−1,

∥Ĵn − I∥ = sup
u∈Sd−1

|u⊤(Ĵn − I)u|,

where the random values u⊤(Ĵn − I)u are “of χ2-type:” indeed, for any u ∈ Sd−1, the random variable

u⊤(Ĵn − I)u =

∑
j∈[n]

(Z⊤
j u)2

− 1

is the centered χ2-type statistic if Zj ∼ N (0, I). More generally, under the premise of Theorem 2.1 one has

|u⊤(Ĵn − I)u| ⩽ cK2

(√
log (δ−1)

n
+

log
(
δ−1
)

n

)
(26)

with probability ⩾ 1 − δ for any fixed u ∈ Sd−1; cf. (21). Now, let’s get some intuition for what is to follow.

• Intuitively, to control ∥Ĵn−I∥ = supu∈Sd−1 |u⊤(Ĵn−I)u| we would want to somehow “take the union
bound” over the unit sphere. Yet, it is unclear how to do this: Sd−1 contains a continuum of points.

• Thus, a reasonable idea seems to replace supu∈Sd−1 |u⊤(Ĵn− I)u| with the supremum over some finite
subset of Sd−1. While this would decrease the supremum, one might hope the approximation to work
for the purpose at hand. In fact, comparing (22) with (26) we expect the approximating set to be of
cardinality N , where logN ∼ d, i.e. N ∼ exp(d). We shall now construct such an approximating set.
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Lecture 7: Covariance estimation and covering numbers

Disclaimer. In this lecture, we prove the theorem on the concentration of sample covariance matrices
discussed in the previous lecture. For convenience, let us repeat the formulation here.

Theorem 0.1 (cf. [Ver12, Theorem 5.39]). Let Z ∈ Rd be isotropic (E[Z] = 0 and E[ZZ⊤] = I) and K-

subgaussian. Consider a sample Z1, . . . , Zn of independent copies of Z, and define Ĵn := 1
nZjZ

⊤
j , which is

an unbiased estimate of the d×d identity matrix I. Then w.p. ⩾ 1− δ the operator norm of Ĵn−I satisfies

∥∥Ĵn − I∥ ≲ K2

(√
d+ log(δ−1)

n
+
d+ log(δ−1)

n

)
. (27)

In particular, there exists c > 0 such that, for any ε ∈ (0, 1), one has
∥∥Ĵn − I∥ ⩽ ε w.p. ⩾ 1 − δ, as long as

n ⩾ cK4ε−2(d+ log(δ−1)). (28)

1 Covering numbers

Let ρ(·, ·) be a metric on Rd. In our situation, ρ(u, v) = ∥u− v∥2 but the construction does not require this.

Definition 7 (Epsilon-covering). Given a metric ρ on Rd and ε ⩾ 0, we say that Sε ⊂ Rd is an ε-covering
of S ⊂ Rd (with respect to ρ) if any u ∈ S is ε-close to some û ∈ Sε; in other words,

∀u ∈ S ∃û ∈ Sε : ρ(u, û) ⩽ ε. (29)

Some trivialities have to be spelled out, e.g.: (a) there are many ε-coverings of a given set; (b) S itself is
its own ε-covering for any ε ⩾ 0; (c) any ε-covering is also an ε′-covering for any ε′ ⩾ ε, and so on. Note also
that, a priori, Sε is not required to be a subset of S, though in applications one might want to ensure this.

”Economic” covering is formalized by the following notion.

Definition 8 (Epsilon-net). Fix a metric ρ and ε ⩾ 0. A set Nε(S, ρ) ⊂ Rd is an ε-net for S ⊂ Rd (with
respect to ρ) if Nε(S) is an ε-covering of S of the smallest cardinality. In other words, |Sε| ⩾ |Nε(S, ρ)| for
any ε-covering Sε of S (w.r.t. ρ). Moreover, Nε(S, ρ) = |Nε(S, ρ)| is the ε-covering number of S (w.r.t. ρ).

For the remainder of the lecture, we let ρ(u, v) = ∥u−v∥2 and supress ρ from the notation for Nε and Nε.

Theorem 1.1. Let Bd be the unit ℓ2-ball in R
d. For all d > 1 and ε ∈ (0, 1), one has(

1

ε

)d
⩽ Nε(Bd) ⩽

(
3

ε

)d
,(

1

ε

)d
⩽ Nε(Sd−1) ⩽

(
3

ε

)d
.

In either case, the covering set can be chosen as a subset of Bd or Sd−1, respectively.

Proof sketch. For the lower bound in the case of Bd, let Nε ⊂ Bd be an ε-net, and draw Nε balls of radius ε
with centers at the net. Their cumulative volume is NεVdε

d where Vd is the volume of Bd. On the other
hand, the union of these balls contains Bd, so NεVdε

d ⩾ Vd. Rearranging, we get the first lower bound. The
other bounds are left as exercises; see e.g. [RH23, Lemma 1.18] for the upper bound with Bd and [Ver12,
Lemma 5.2] for the upper bound with Sd−1. Intuitively, note that the case of Sd−1 is qualitatively not that
different from Bd, simply because the surface area Ad of Sd−1 satisfies

Vd = Ad

∫ 1

0

rdr =
1

2
Ad,

i.e. Ad and Vd are of the same order. Also, upper and lower bounds have the same behavior in ε because of
the duality between covering and packing; see [RH23, Problem 1.7].
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Remark. The first line of inequalities of Theorem 1.1 actually works for any norm ν(·) on Rd, namely(
1

ε

)d
⩽ Nε(Bdν) ⩽

(
3

ε

)d
where Bdν := ∥u ∈ Rd : ν(u) ⩽ 1∥ is the unit ball of ν(·), and Nε(Bdν) is the ε-covering number of Bdν with
respect to the metric ρ(u, v) = ν(u− v). This is because of the volume relation Vol(εBdν) = εd Vol(Bdν).

Covering numbers for a pair of norms. Computing the covering numbers of Bdν w.r.t. another norm ν′ ̸=
ν might be a nontrivial task. Indeed: on the one hand, one can rather easily extend Theorem 1.1 as follows.

Theorem 1.2. For any ε ∈ (0, 1), the ε-covering number Nε(B, ν
′) of the unit ball B of ν w.r.t. ν′ satisfies

Vol(B)

εd Vol(B′)
⩽ Nε(B, ν

′) ⩽
Vol(B + ε

2B
′)

( ε2 )d Vol(B′)

where B′ is the unit ball of ν′, and K + L = {u+ v : u ∈ K, v ∈ L} is the Minkowski sum of two sets K,L.

Exercise 1.1. Prove Theorem 1.2. (The proof can be found in [Wai19].)

On the other hand, it is not guaranteed that the two bounds nearly match in the same sense as before—i.e.,
are of the same order in ε after extracting the 1

d -th root. This is because of the volume Vol(B + εB′) that
might be way larger than Vol(B+ εB′), and characterizing it might itself be a nontrivial geometric problem.

2 Approximation argument

Key observation: replacing the whole sphere Sd−1 with its ε-covering we approximate ∥A∥ = supu∈Sd−1 |u⊤Au|
up to a factor Cε depending only on ε; in particular, ε = c < 1 gives a constant approximation factor. Namely:

Proposition 2.1. For any symmetric d× d matrix A, any ε ∈ (0, 1/2) and ε-covering Sε of Sd−1, one has

∥A∥ ⩽
1

1 − 2ε
sup
u∈Sε

|u⊤Au|.

Proof. We use triangle inequality several times to pass from u⊤Au to û⊤Aû, where u, û are unit vectors:

|u⊤Au| ⩽ |u⊤Aû| + |u⊤A(û− u)|
⩽ |û⊤Aû| + |u⊤A(û− u)| + |û⊤A(û− u)|
⩽ |û⊤Aû| + 2∥A(û− u)∥2
⩽ |û⊤Aû| + 2∥û− u∥2∥A∥.

Choosing û ∈ Sε[⊂ Sd−1 as the closest to u node, and taking the supremum over u ∈ Sd−1, we arrive at

∥A∥ = sup
u∈Sd−1

|u⊤Au| ⩽ 2ε∥A∥ + sup
û∈Sε

|û⊤Aû|,

and the claim follows.

3 Completing the proof of Theorem 0.1

It only remains to combine the pieces:

1. Instantiating Propositon 2.1 for A = Ĵn − I with ε = 1/4, one has (with probability one):

∥Ĵn − I∥ ⩽ 2 sup
u∈S1/4

|u⊤Au|.
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2. By (26), for any u ∈ S1/4 one has with probability at least 1 − δ:

|u⊤(Ĵn − I)u| ⩽ cK2

(√
log (δ−1)

n
+

log
(
δ−1
)

n

)
.

3. Taking the union bound overN = |S1/4| events corresponding to all nodes of the net, we get w.p. ⩾ 1−δ:

∥Ĵn − I∥ ⩽ 2cK2

(√
log (Nδ−1)

n
+

log
(
Nδ−1

)
n

)

where N = |S1/4| ⩽ 12d, so log(N) = O(d). The theorem is proved.

4 Smoothed covariance estimation

At least when X is Gaussian, one can extend Theorems 0.1 (a.k.a. Theorem 2.2 from the previous lecture)
to the following result.

Theorem 4.1 ([KL17]). Let λ ⩾ 0 be arbitrary, let Σλ := Σ+λI and define the degrees-of-freedom number

dλ(Σ) := tr(ΣΣ−1
λ ) = tr(Σ

−1/2
λ ΣΣ

−1/2
λ ).

Assuming that X ∼ N (0,Σ), with probability ⩾ 1 − δ one has

∥∥Σ−1/2
λ (Σ̂n −Σ)Σ

−1/2
λ ∥ ≲

√
dλ(Σ) + log(δ−1)

n
+
dλ(Σ) + log(δ−1)

n
. (30)

In one of the subsequent lectures, we shall discuss how to preserve such a generalization for robust esti-
mators of covariance under weak moment assumptions. To make sone sense of the generality of Theorem 4.1:

Exercise 4.1. By simple linear algebra, verify the following claims.

(a) Putting λ ⩽ cλmin(Σ) in (30), where c > 0 is an arbitrary constant, one recovers (25) in the Gaussian
case, i.e. the same result as for λ = 0 up to a constant factor (and under Gaussianity).

(b) Putting λ ⩾ c∥Σ∥ in (30), one recovers the effective rank bound, namely

∥∥Σ̂n −Σ∥ ≲ K2∥Σ∥

(√
r(Σ) + log(δ−1)

n
+
r(Σ) + log(δ−1)

n

)
(31)

with probability ⩾ 1 − δ, where

r(Σ) :=
tr(Σ)

∥Σ∥

is the ℓ1-effective rank of Σ (called so since r(Σ) = ∥λ⃗(Σ)∥1

∥λ⃗(Σ)∥∞
, where λ⃗(Σ) is the vector of eigenvalues).

(c) Show that the case λ = ∥Σ∥ is the hardest: applying (31) to the right matrix one gets (30) for smaller λ.

Exercise 4.2. 1. Prove the min-max theorem for eigenvalues: if A,B are symmetric d×d matrices, then

A ≽ B =⇒ λk ⩾ µk ∀k ∈ [d],

where λ1:n, µ1:n are the sorted (in descending order) eigenvalues of A,B respectively. Hint: use that

λk = min
S⊂Rd:dim(S)=k

max
u∈S:∥u∥2⩽1

u⊤Au

where the minimum is taken over all subspaces of dimension k.
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2. Use the above result to verify the following implication:∥∥Σ−1/2
λ (Σ̂n −Σ)Σ

−1/2
λ ∥ ⩽ ε =⇒ |λ̂j − λj | ⩽ ε(λj + λ)

where λj and λ̂j are the eigenvalues of Σ and Σ̂ respectively (sorted in the descending order). This can

be interpreted as follows:
∥∥Σ−1/2

λ (Σ̂n−Σ)Σ
−1/2
λ ∥ ⩽ ε implies that eigenvalue λj is estimated (with λ̂j),

up to relative error ε, in its own scale for λj ≳ λ, and “in the scale λ” for λj ≲ λ. In particular, all
eigenvalues are estimated in the scale λ if λ ≳ ∥Σ∥, and in their own respective scales if λ ≲ λmin(Σ).

5 Challenge: proving Theorem 4.1 without generic chaining

The following exercise is not an easy feat, especially if one resists the temptation of looking inside [KL17].

Exercise 5.1 (Covariance estimation with effective rank). Prove Theorem 4.1 with λ = ∥Σ∥. Some ideas:

1. Partition the indices of eigenvalues (w.l.o.g. sorted) into the groups

Jk = {j ∈ [d] : 2−k∥Σ∥ < λj(Σ) ⩽ 21−k∥Σ∥}, k ∈ N.

In fact, the last nonempty group is Jkmax with kmax = ⌈log2(cond(Σ))⌉, where cond(Σ) = ∥Σ∥
λmin(Σ) is the

condition number. Observe (and justify) that the sizes of these groups satisfy |Jk| ⩽ min{2kr(Σ), d}.

2. Consider the orthogonal decomposition of Rd into subspaces Sk = span(uj : j ∈ Jk) for k ∈ {1, ..., kmax};
that is, Sk is the product of the eigenspaces of Σ corresponding to all eigenvalues at level k. Note that

dk := dim(Sk) = |Jk| ⩽ min{2kr(Σ), d}.

3. Observe that for any fixed u ∈ Rd, one has n
∥u∥2

Σ
u⊤(Σ̂−Σ)u ∼ χ2

n, therefore with probability ⩾ 1 − δ,

|u⊤(Σ̂−Σ)u| ≲ ∥u∥2Σ

(√
log(δ−1)

n
+

log(δ−1)

n

)
⩽ ∥Σ∥ ∥u∥22

(√
log(δ−1)

n
+

log(δ−1)

n

)
.

4. Suggest a discretization set N for the sphere Sd−1 (or for the unit ball, if you prefer) such that

∥Σ̂−Σ∥ = sup
∥u∥2=1

|u⊤(Σ̂−Σ)u| ≲ sup
u∈N

|u⊤(Σ̂−Σ)u| ≲ ∥Σ∥

(√
r(Σ) + log(δ−1)

n
+
r(Σ) + log(δ−1)

n

)
(32)

where the first inequality holds almost surely (hiding a constant factor), and the second inequality holds
w.p. ⩾ 1 − δ and might hide an additional logarithmic factor. To this end, let Nk be the εk-net (w.r.t.
the norm ∥ · ∥2) of the unit ball in Sk, Bk = {u ∈ Sk : ∥u∥ ⩽ 1}, with εk to be specified; note that

Nk = |Nk| ⩽
(

3

εk

)dk
.

On the other hand, the product set
N1 × · · · × Nkmax

is an ε-net for the unit ball in Rd, with ε2 =
∑
k ε

2
k by the Pythagorean theorem. Based on these ideas

and observations, construct N and a scheme of discounting the probabilities of the violation events
for u ∈ N (in the spirit of Lecture 2: Section 2) that verify (32).
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