[SyE 8803: Special Topics in Modern Mathematical Data Science
Homework 2

due on Sunday, 04/27 at 11:59 pm

Please submit electronically directly to Canvas in a PDF file.
Each “raw” point is worth 20 percentage points, so you can get an A by solving 3 problems.




1 Univariate exponential families and self-concordance (2pt)

By definition, a univariate exponential family (in canonical parameterization) is the family of p.d.f.’s

€

where © C R; the function ¢(#) is called the log-cumulant (or log-partition function); T'(x) is the
sufficient statistic. (Note that pg(z) depends on x only through 7'(z).) An exponential family is called
regular if the support X of py(-) is the same for all # € R. The set ©* := dom(¢) is the canonical
domain of an exponential family, and the family is called full if © = ©*. Prove the following results:

1. The canonical domain is a convex set (i.e. segment, as ©* C R). That is, if 0y, 0; € ©*, then

0y := (1 — )\)90 + M1 €O VYie [0, 1].

2. The log-cumulant is convex. (Note that it suffices to test convexity on a segment [f, 61] C ©*.)

3. Let Ep[g(X)] be the expectation of g = g(X) over X ~ py. Show that ¢'(0) = E[T'(X)] and
¢(0) = Ey[(T(X) — Bo[T(X)])"] for p € {2,3}.
(Hint: to simplify calculations, you may focus on the random variable T' = T'(X) right away.)

4. Construct an example showing that, in general, ¢ () # Eo[(T(X) — Eq[T'(X)])%].
(Hint: think in terms of familiar distributions, and Wikipedia is at your service.)

5. Let ¢(0) = —log(f) and X = R4. Derive ©* and recognize the family (hint: take T'(X) = —X).

e Note that for any 6y > 0, the segment {6 € R: (§ — 00)%0,% < 1} is a subset of Ry. Is
that a coincidence? What is the geometric meaning of this segment in terms of function ¢?

6. Now let ¢(0) = log(1 + €’) and X = {0, 1} (the distribution is discrete, so p.d.f. is now p.m.f.)

e Derive ©* and recognize the family as a reparameterized Bernoulli family.

o Without computing ¢" and ¢" directly, show that |¢"(0)| < ¢"(0).
(Hint: use the result of 3 and compute the third moment of X ~ Bernoulli(p).)



2 Fenchel duality and generalized self-concordance (2pt)
Let f : R? — RU{+oc}. Recall that the Fenchel dual or convex conjugate of f is f. : RY — RU{+o0},
(1)

f*(u) ‘= sup (u,a:) - f(l')
r€R4

In what follows, we assume that f is strictly convex and C' (continuously differentiable), and use

the involution property: (fi)s = f. Also, you may assume d = 1.

1°: Mazimization property.
a. Show that f, is differentiable at any u for which the supremum in (1) is attained, and one has

fi(u) = arg sup (u,z) — f(x).
zeR4

Use the subgradient rule for pointwise maxima of (differentiable) convex functions: “the subd-
ifferential of the maximum is the convex combination of the gradients of active components.”

b. Using the involution property, observe that this works in either direction, and the mappings f’
and f! are mutually inverse (and thus bijective); in other words,
flifw) =u, fi(f'(z) ==

As such, it is convenient to define u(x) = f’(z) and x(u) = f.(u), and consider pairings ((x, u))

with © = u(x) and = = x(u).
29: Clurvature property. Show that, in the notation defined in 1°.b, one has

1 1!
Fiwy W)= gy

9" (u())

3%: Generalized self-concordance.
a. Assume that f is C3-smooth and convex. Recall the definition of generalized self-concordance

(GSC) with exponent r > [1,2]: f is m-GSC if there exists a nonnegative constant ¢ such that

|f" (@) < ef”’(z)" Vo e R

For example, the “vanilla” SC function — log(z) is %—GSC, with ¢ = 2. Prove the following:

Forr € [1,2], f is r-GSC if and only if f. is s-GSC with s =3 —r and the same c.

Hint: use the result of 2°.
b. Compute the dual for g(z) = —log(z) on Ry and h(z) = zln(z) + (1 — z)In(l — z) on (0,1)
The last result is very important, we will revisit (and generalize) it in class, as Gibbs’ duality:

Informally: entropy and log-partition function are mutual convexr conjugates.

!The results can be generalized to R? by fixing a segment [zo, 1] and restricting f to [zo,x1], i.e. defining the
function ¢(t) = f(x¢) on [0, 1], where z; = (1 — t)xo + tx1. See Nesterov [Nes13] for a demonstration of this technique.



3 Hypercontraction of the norm of a random vector (1pt)
Let [[¢]|z, = (E[|£[P])Y/P. Prove that if X € R? is mean-zero and s-hypercontractive, i.e. one has
lu" X, <sellu Xz, VuesT

then the random variable £ = || X |2 is s»-hypercontractive as well, i.e. one has |||z, < »||||L,-
Hint: start by writing || X ||3 as the squared sum of the squared entries of X.



4 Improved union bound for the maximum of Gaussians (2pt)

Solve Exercise 3.1 from Lecture 6. You will find the definitions and context therein.
NB: updated on 04/13.



5 Orlicz norms I (1pt)

Solve Exercises 2.1-2.2 from Lecture 4. You will find the definitions and context therein.



6 Orlicz norms IT (2pt)

Solve Exercises 3.1-3.2 from Lecture 4. You will find the definitions and context therein.



7 Concentration of sample moment tensors (3pt)

Here we extend the sample covariance matrix estimation result (Theorem 2.1 from Lecture 7) to
higher-order moments, namely the tensor Q of 4th-order moments of Z € R¢. In fact, this approach
is applicable to all moments; we avoid this generalization here for simplicity.

Some definitions: a quartic tensor A € R4*4*4xd js simply a 4-dimensional array; it is called
symmetric if Aijx = Az(i)r(j)m(k)x() for any permutation 7 of the multi-index. Clearly, the 4th-order
moment tensor of Z, as given by

Qiji =B [Z(i)Z(J')Z(k)Z(l)]

where Z() .= (Z,€;) is the ith entry of Z, is symmetric. A is rank-one if A = x;yj2,w; for some
vectors z,y, z,w € R% in this case, one also writes A = 2@y ® z @ w. A symmetric rank-one
quartic tensor writes A =z Q@ z ® z ® z = 2®* for some z € R?, and Q can be estimated from

i.i.d. sample 71, ..., Z, with
A 1
== E 794,
QTL n K

i€[n]

Note that a covariance matrix is the tensor of 2nd-order moments: E[ZZ"] = E[Z ® Z]. Similarly
to the case of covariance matrices, one can associate @ with a symmetric quadrilinear form that
acts on a quadruple z,y, z,w € R? as follows:

Qg 2w = S Quua®yD) My
i,4,k,l€[d]

where (9 = (z,¢;); in particular, Q[u,u,u,u] is a quartic form (i.e., a symmetric homogeneous
polynomial of degree 4 in the entries of u). The operator norm of a symmetric quartic tensor A is

|All = sup |Alu,u,u,ul.
uegd—1

One may show that following result for the deviations of Qn from @ in operator norm.

Theorem 1. Assume that Z; € R? are zero-mean and K -subgaussian. For § < L, with prob. > 1—6,

n’

Q. - @Il < K*

n

((d tlog(671)* | [fd+ 10g(51)> |

In particular, the sample complexity of estimating Q up to a constant relative error in the norm is

0 ( K (5—1))2>
— og .
el
Note that 6 < % is hardly a restrictive condition: it can be thought of as increasing d by log n.
We will prove a suboptimal version of the theorem, with (d + log(§~1)? instead of (d + log(d—1)2.
To do it, it is suggested—Dbut not required—to follow the plan below.



1. Approximation. Emulating our in-class proof, show that for any symmetric quartic tensor A,

|A|| < ———  sup  |Afu,u,u,ul|
1 —de yen(sa-1)

where N.(S?71) is an e-net of the sphere. It is OK if you get a larger universal constant than 4.

2. Bernstein’s inequality. Take note of the following result (no need to prove it): if Wy,..., W,
are independent random variables with |W;| < R a.s., then with probability > 1 — 0 one has

30, Wi — E[Wi]| < Rlog(257") +y/log(20-1) 3=, Var(W).
This result is proved via the MGF method; the proof mimics that of the “vanilla” y?-bound.

3. Truncation. Show that if & are independent with E[¢;] = 0, Var[¢;] = 1 and ||&;]|y, < K, then

‘Ziew & - EKZ‘]‘ < K*log?(2n6~1) + /nlog(26-1) -
with probability > 1 — 4. To prove this result, run the truncation method as explained below.

e Define W; = €M(|¢| < RY/*) and consider the decomposition

D&~ Bl = >_(Wi - E[W;)) +Zf— +ZEW &)

1

e Using the results of Exercises 3.1-3.2 from Lecture 4 (no need to prove them), show that
if one selects R > log?(2nd~!), the right-hand side is at most >, W; — E[W;] w.p. > 1 4.
e Use Bernstein’s inequality (2.) to control the sum ), W; — E[Wj] of truncated variables.

e Control the negative deviations analogously but with some tweaks; you may assume § < %

4. Union bound and suboptimal result. Combine the results of (3.) and (1.) to show a slackened
version of Theorem 1 with (d 4 log(6=1))? instead of (d + log(6~1))2.

Remark. Theorem 1 would follow if in (2) we manage to replace log(2n6~') with log?(2nd—1).
In general, for the sum of p-powers under the assumptions of (3.), with any p > 2, one may prove
that with probability > 1 — 9,

Dicpy Gl — E[l&GP]] < KP logP/2(2671) 4+ /nlog(26—1). (3)

In particular, for p = 2 we recover the vanilla x? bound, for p = 3 the first term 1s K3log 3/2 , etc.;
meanwhile, the truncatlon method when generalized to this setting, gives KP log 3 (2n5 1), which
results in (d + log(d~ 1)) * for tensors. A (long) proof can be found e.g. in [HAYWC19, Thm. 3.1].
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