
ISyE 8803: Special Topics in Modern Mathematical Data Science

Homework 2

due on Sunday, 04/27 at 11:59 pm

Please submit electronically directly to Canvas in a PDF file.
Each “raw” point is worth 20 percentage points, so you can get an A by solving 3 problems.

1



1 Univariate exponential families and self-concordance (2pt)

By definition, a univariate exponential family (in canonical parameterization) is the family of p.d.f.’s{
pθ(x) = eT (x)θ−ϕ(θ) · 1X (x)

}
θ∈Θ

where Θ ⊆ R; the function ϕ(θ) is called the log-cumulant (or log-partition function); T (x) is the
sufficient statistic. (Note that pθ(x) depends on x only through T (x).) An exponential family is called
regular if the support X of pθ(·) is the same for all θ ∈ R. The set Θ∗ := dom(ϕ) is the canonical
domain of an exponential family, and the family is called full if Θ = Θ∗. Prove the following results:

1. The canonical domain is a convex set (i.e. segment, as Θ∗ ⊆ R). That is, if θ0, θ1 ∈ Θ∗, then

θλ := (1− λ)θ0 + λθ1 ∈ Θ∗ ∀λ ∈ [0, 1].

2. The log-cumulant is convex. (Note that it suffices to test convexity on a segment [θ0, θ1] ⊆ Θ∗.)

3. Let Eθ[g(X)] be the expectation of g = g(X) over X ∼ pθ. Show that ϕ′(θ) = Eθ[T (X)] and

ϕ(p)(θ) = Eθ[(T (X)− Eθ[T (X)])p] for p ∈ {2, 3}.

(Hint: to simplify calculations, you may focus on the random variable T = T (X) right away.)

4. Construct an example showing that, in general, ϕ(4)(θ) ̸= Eθ[(T (X)− Eθ[T (X)])4].
(Hint: think in terms of familiar distributions, and Wikipedia is at your service.)

5. Let ϕ(θ) = − log(θ) and X = R+. Derive Θ∗ and recognize the family (hint: take T (X) = −X).

• Note that for any θ0 > 0, the segment
{
θ ∈ R : (θ − θ0)

2θ−2
0 < 1

}
is a subset of R+. Is

that a coincidence? What is the geometric meaning of this segment in terms of function ϕ?

6. Now let ϕ(θ) = log(1 + eθ) and X = {0, 1} (the distribution is discrete, so p.d.f. is now p.m.f.)

• Derive Θ∗ and recognize the family as a reparameterized Bernoulli family.

• Without computing ϕ′′ and ϕ′′′ directly, show that |ϕ′′′(θ)| ⩽ ϕ′′(θ).
(Hint: use the result of 3 and compute the third moment of X ∼ Bernoulli(p).)
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2 Fenchel duality and generalized self-concordance (2pt)

Let f : Rd → R∪{+∞}. Recall that the Fenchel dual or convex conjugate of f is f∗ : Rd → R∪{+∞},

f∗(u) := sup
x∈Rd

⟨u, x⟩ − f(x). (1)

In what follows, we assume that f is strictly convex and C1 (continuously differentiable), and use
the involution property: (f∗)∗ = f . Also, you may assume d = 1.1

1o: Maximization property.

a. Show that f∗ is differentiable at any u for which the supremum in (1) is attained, and one has

f ′
∗(u) = arg sup

x∈Rd

⟨u, x⟩ − f(x).

Use the subgradient rule for pointwise maxima of (differentiable) convex functions: “the subd-
ifferential of the maximum is the convex combination of the gradients of active components.”

b. Using the involution property, observe that this works in either direction, and the mappings f ′

and f ′
∗ are mutually inverse (and thus bijective); in other words,

f ′(f ′
∗(u)) ≡ u, f ′

∗(f
′(x)) ≡ x.

As such, it is convenient to define u(x) = f ′(x) and x(u) = f ′
∗(u), and consider pairings ((x, u))

with u = u(x) and x = x(u).

2o: Curvature property. Show that, in the notation defined in 1o.b, one has

g′′(u(x)) ≡ 1

f ′′(x)
, f ′′(x(u)) ≡ 1

g′′(u)
.

3o: Generalized self-concordance.

a. Assume that f is C3-smooth and convex. Recall the definition of generalized self-concordance
(GSC) with exponent r ⩾ [1, 2]: f is r-GSC if there exists a nonnegative constant c such that

|f ′′′(x)| ⩽ cf ′′(x)r ∀x ∈ Rd.

For example, the “vanilla” SC function − log(x) is 3
2 -GSC, with c = 2. Prove the following:

For r ∈ [1, 2], f is r-GSC if and only if f∗ is s-GSC with s = 3− r and the same c.

Hint: use the result of 2o.

b. Compute the dual for g(x) = − log(x) on R+ and h(x) = x ln(x) + (1− x) ln(1− x) on (0, 1).
The last result is very important, we will revisit (and generalize) it in class, as Gibbs’ duality:

Informally: entropy and log-partition function are mutual convex conjugates.

1The results can be generalized to Rd by fixing a segment [x0, x1] and restricting f to [x0, x1], i.e. defining the
function ϕ(t) = f(xt) on [0, 1], where xt = (1− t)x0 + tx1. See Nesterov [Nes13] for a demonstration of this technique.
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3 Hypercontraction of the norm of a random vector (1pt)

Let ∥ξ∥Lp = (E[|ξ|p])1/p. Prove that if X ∈ Rd is mean-zero and κ-hypercontractive, i.e. one has

∥u⊤X∥L4 ⩽ κ∥u⊤X∥L2 ∀u ∈ Sd−1,

then the random variable ξ = ∥X∥2 is κ-hypercontractive as well, i.e. one has ∥ξ∥L4 ⩽ κ∥ξ∥L2 .
Hint: start by writing ∥X∥42 as the squared sum of the squared entries of X.
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4 Improved union bound for the maximum of Gaussians (2pt)

Solve Exercise 3.1 from Lecture 6. You will find the definitions and context therein.
NB: updated on 04/13.
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5 Orlicz norms I (1pt)

Solve Exercises 2.1–2.2 from Lecture 4. You will find the definitions and context therein.
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6 Orlicz norms II (2pt)

Solve Exercises 3.1–3.2 from Lecture 4. You will find the definitions and context therein.
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7 Concentration of sample moment tensors (3pt)

Here we extend the sample covariance matrix estimation result (Theorem 2.1 from Lecture 7) to
higher-order moments, namely the tensor Q of 4th-order moments of Z ∈ Rd. In fact, this approach
is applicable to all moments; we avoid this generalization here for simplicity.

Some definitions: a quartic tensor A ∈ Rd×d×d×d is simply a 4-dimensional array; it is called
symmetric if Aijkl = Aπ(i)π(j)π(k)π(l) for any permutation π of the multi-index. Clearly, the 4th-order
moment tensor of Z, as given by

Qijkl = E
[
Z(i)Z(j)Z(k)Z(l)

]
where Z(i) := ⟨Z, ei⟩ is the ith entry of Z, is symmetric. A is rank-one if Aijkl = xiyjzkwl for some
vectors x, y, z, w ∈ Rd; in this case, one also writes A = x ⊗ y ⊗ z ⊗ w. A symmetric rank-one
quartic tensor writes A = x ⊗ x ⊗ x ⊗ x = x⊗4 for some x ∈ Rd, and Q can be estimated from
i.i.d. sample Z1, . . . , Zn with

Q̂n =
1

n

∑
i∈[n]

Z⊗4
i .

Note that a covariance matrix is the tensor of 2nd-order moments: E[ZZ⊤] = E[Z ⊗ Z]. Similarly
to the case of covariance matrices, one can associate Q with a symmetric quadrilinear form that
acts on a quadruple x, y, z, w ∈ Rd as follows:

Q[x, y, z, w] =
∑

i,j,k,l∈[d]

Qijkl x
(i)y(j)z(k)w(l)

where x(i) = ⟨x, ei⟩; in particular, Q[u, u, u, u] is a quartic form (i.e., a symmetric homogeneous
polynomial of degree 4 in the entries of u). The operator norm of a symmetric quartic tensor A is

∥A∥ = sup
u∈Sd−1

|A[u, u, u, u]|.

One may show that following result for the deviations of Q̂n from Q in operator norm.

Theorem 1. Assume that Zi ∈ Rd are zero-mean and K-subgaussian. For δ ⩽ 1
n , with prob. ⩾ 1−δ,

∥Q̂n −Q∥ ≲ K4

(
(d+ log(δ−1))2

n
+

√
d+ log(δ−1)

n

)
.

In particular, the sample complexity of estimating Q up to a constant relative error in the norm is

O

(
K4

∥Q∥
(d+ log(δ−1))2

)
.

Note that δ ≲ 1
n is hardly a restrictive condition: it can be thought of as increasing d by log n.

We will prove a suboptimal version of the theorem, with (d+ log(δ−1)3 instead of (d+ log(δ−1)2.
To do it, it is suggested—but not required—to follow the plan below.
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1. Approximation. Emulating our in-class proof, show that for any symmetric quartic tensor A,

∥A∥ ⩽
1

1− 4ε
sup

u∈Nε(Sd−1)

|A[u, u, u, u]|

where Nε(S
d−1) is an ε-net of the sphere. It is OK if you get a larger universal constant than 4.

2. Bernstein’s inequality. Take note of the following result (no need to prove it): if W1, . . . ,Wn

are independent random variables with |Wi| ⩽ R a.s., then with probability ⩾ 1− δ one has

|
∑

iWi − E[Wi]| ≲ R log(2δ−1) +
√
log(2δ−1)

∑
iVar(Wi).

This result is proved via the MGF method; the proof mimics that of the “vanilla” χ2-bound.

3. Truncation. Show that if ξi are independent with E[ξi] = 0, Var[ξi] = 1 and ∥ξi∥ψ2 ⩽ K, then∣∣∣∑i∈[n] ξ
4
i − E[ξ4i ]

∣∣∣ ≲ K4 log3(2nδ−1) +
√

n log(2δ−1) (2)

with probability ⩾ 1− δ. To prove this result, run the truncation method as explained below.

• Define Wi = ξ4i 1(|ξi| ⩽ R1/4) and consider the decomposition∑
i

ξ4i − E[ξ4i ] =
∑
i

(Wi − E[Wi]) +
∑
i

(ξ4i −Wi) +
∑
i

E[Wi − ξ4i ].

• Using the results of Exercises 3.1–3.2 from Lecture 4 (no need to prove them), show that
if one selects R ≳ log2(2nδ−1), the right-hand side is at most

∑
iWi−E[Wi] w.p. ⩾ 1− δ.

• Use Bernstein’s inequality (2.) to control the sum
∑

iWi − E[Wi] of truncated variables.

• Control the negative deviations analogously but with some tweaks; you may assume δ ⩽ 1
n .

4. Union bound and suboptimal result. Combine the results of (3.) and (1.) to show a slackened
version of Theorem 1 with (d+ log(δ−1))3 instead of (d+ log(δ−1))2.

Remark. Theorem 1 would follow if in (2) we manage to replace log3(2nδ−1) with log2(2nδ−1).
In general, for the sum of p-powers under the assumptions of (3.), with any p ⩾ 2, one may prove
that with probability ⩾ 1− δ,∣∣∣∑i∈[n] |ξi|p − E[|ξi|p]

∣∣∣ ≲ Kp logp/2(2δ−1) +
√

n log(2δ−1). (3)

In particular, for p = 2 we recover the vanilla χ2 bound, for p = 3 the first term is K3 log3/2, etc.;

meanwhile, the truncation method, when generalized to this setting, gives Kp log
p+2
2 (2nδ−1), which

results in (d+ log(δ−1))
p+2
2 for tensors. A (long) proof can be found e.g. in [HAYWC19, Thm. 3.1].
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