
Math 7252: High-Dimensional Statistics

Homework 1

due: Sep 29, 11:59 pm

Please submit electronically directly to Canvas in a PDF file.
Each problem is worth the number of points in parentheses.

The full score is 44 points; you get ”A” for 22+ points, ”B” for 14+ points.
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1 MGF method vs. moment bounds (3)

It is natural to compare the best bound on the tails obtained via MGF and by bounding the
moments. As it turns out, the moment bounds are sharper, even if we only use the integer moments.

(a) Show that if X > 0 a.s., then for any u > 0,

inf
λ>0

MX(λ)e
−λu ⩾ inf

k∈Z+

E
[
Xk

]
u−k.

(b) Show that if X is symmetric (i.e. X and −X have the same distribution), then for any u > 0,

inf
λ>0

MX(λ)e
−λu ⩾

1

2
inf
k∈Z+

E
[
X2k

]
u−2k.
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2 Convexity of the cumulant-generating function (2)

For any distribution X, the logarithm of the MGF

KX(t) = logE[etX ]

is called the cumulant-generating function, or the log-partition function of the distribution.

(a) Show that KX is convex. Use Young’s inequality: for a, b ∈ Rd and p, q ∈ [1,∞] with 1
p+

1
q = 1,

|a⊤b| ⩽ ∥a∥p∥b∥q.

You can assume that X has a discrete distribution.
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3 Gaussian tails (3)

3.1 Mills ratio

Let ϕ(·) be the p.d.f. of N (0, 1), i.e. ϕ(t) = 1√
2π
e−

t2

2 . For any u ⩾ 0, let Φ(u) :=
∫
t⩾u ϕ(t)dt.

(a) Prove the following bounds (holding for all u ⩾ 0):(
1

u
− 1

u3

)
ϕ(u) ⩽ Φ(u) ⩽

1

u
ϕ(u).

Hint 1: Try to prove the upper bound first.

Hint 2: Integrate by parts – first to prove the upper bound, then again for the lower bound.

(b) Capitalizing on the trick you have just figured out to get the lower bound from the upper
bound, prove a new upper bound:

Φ(u) ⩽

(
1

u
− 1

u3
+

3

u5

)
ϕ(u).

Note that this bound is sharper than the previous one for large enough u.

∗(c) If we continue this approach, we obtain a power series in 1/u for the Mills ratio Φ(u)/ϕ(u);
see Theorem 2.1 from Lecture 2. Get yourself convinced in it (no need to prove).

3.2 Power series for c.d.f.

Show that
1

2
− Φ(u) =

1√
2π

∞∑
k=0

(−1)ku2k+1

2kk!(2k + 1)
.

Hint: change variable to remove u from the integration limits; differentiate in u under the integral.
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4 Paley-Zygmund and friends (3)

(i) Prove the Paley-Zygmund inequality (it can be interpreted as a counterpart of Markov: a
nonnegative random variable cannot be much smaller than its expectation):

If X is a non-negative random variable with E[X2] < ∞, then for any t ∈ [0, 1] one has

P(X ⩾ (1− t)EX) ⩾ t2
(EX)2

E[X2]
. (1)

(ii) Under the same assumptions, strengthen (1), to Cantelli’s inequality:

P(X ⩾ (1− t)EX) ⩾ t2
(EX)2

t2(EX)2 +Var[X]
.

This new inequality is sharp – give an example where it is attained.

(iii) Now: instead of E[X2] < ∞, assume that E[|X|p] < ∞ for some p > 1, and generalize (1) to

P(X ⩾ (1− t)EX) ⩾

(
tp

(EX)p

E[|X|p]

) 1
p−1

.

Note that when p > 2, this gives an improvement over (1) for small t, which is important in
applications where X is itself the sample average of i.i.d. Y1, ..., Yn.

Hint: use Hölder’s inequality: given p, q ⩾ 1 such that 1/p + 1/q = 1, and random vari-

ables U, V on the same sample space, one has E[|UV |] ⩽ (E|U |p)
1
p · (E|V |q)

1
q .
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5 Stein’s paradox (5)

Consider the problem of estimating the mean µ in the multivariate Gaussian location family

Pµ = N (µ, Id), µ ∈ Rd, (2)

where Id is the d× d identity matrix, from a single observation X ∼ Pµ. Note that here, X itself
is the maximum likelihood estimator (MLE) for µ. Defining for any estimator µ̂ = µ̂(X) of µ the
variance

Varµ[µ̂] := Eµ[∥µ̂− E[µ̂]∥2]

and the quadratic risk
Riskµ[µ̂] := Eµ[∥µ̂− µ∥2],

where ∥x∥ := (
∑

i x
2
i )

1/2 is the Euclidean norm of x = (x1, ..., xd) ∈ Rd, we see that for any µ ∈ Rd,

Riskµ[X] = Varµ[X] = d.

Intuitively, one can suspect that no better estimator of X can be found: really, what can be
done with only a single observation of the mean? Yet, this turns out to be false: one may improve
over the MLE uniformly on the family (2) when d > 2. This celebrated result was established by
James and Stein in 1976, and our goal is to reproduce it. But first, let us establish the terminology.

Definition 1. An estimator µ̂ is dominated by some other estimator µ̂′ if Riskµ[µ̂
′] ⩽ Riskµ[µ̂] for

any µ, and there exists a parameter value µ̄ such that Riskµ̄[µ̂
′] < Riskµ̄[µ̂].

Definition 2. An estimator µ̂ is called admissible if it is not dominated by any other estimator.
Otherwise, it is called inadmissible.

As statisticians, ideally we would like to compare two estimators over the whole family at once,
without specifying a value of µ. Two admissible estimators cannot be compared this way, but at
the very least we can rule out any inadmissible estimator, as for it there exists a uniformly better one.

You will show that the MLE is inadmissible when d ⩾ 3, by constructing a dominating estimator.

(a) Consider shrinkage estimators µ̂ = sX with s ∈ R, and compute their risks for any s. Show
that one can restrict attention to s ∈ [0, 1] (hence “shrinkage”) by finding a dominating
estimator for µ̂ with s < 0 or s > 1.

(b) Show that, for given µ, the best value of s—i.e., the one minimizing the risk—is given by

s∗ =
∥µ∥2

d+ ∥µ∥2
= 1− d

d+ ∥µ∥2
.

(c) Unfortunately, µ̂∗ = s∗X is not a proper estimator. (Why?) Instead of it, one may consider(
1− d

∥X∥2

)
X,

which is an actual estimator. Can you explain the heuristic motivation behind this estimator?
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∗(d) Assuming that d ⩾ 2, derive the James-Stein estimator

µ̂JS =

(
1− d− 2

∥X∥2

)
X (3)

by minimizing over δ ∈ R the risk of the estimator

µ̂δ =

(
1− δ

∥X∥2

)
X

for a fixed µ. In order to show that R(δ) = Riskµ[µ̂
δ] is minimized at d− 2, use Stein’s lemma:

Lemma 1. Let X ∼ N (µ, I) and g(x) be a function on Rd differentiable almost everywhere,

and such that Eµ

[
| ∂∂xi g(X)|

]
< ∞ and Eµ[|(Xi−µi)g(X)|] < ∞ for any i ∈ [d] := {1, 2, ..., d}.

Then

Eµ[(Xi − µi)g(X)] = Eµ

[
∂

∂xi
g(X)

]
, i ∈ [d].

When applying Stein’s lemma to the right function g(X), please do check the absolute
integrability conditions in its premise, and explain why the argument does not work for d = 1.

Finally, verify that R(δ) is strictly convex when d ⩾ 3 (thus µ̂JS indeed dominates the MLE).
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6 Improved union bound for the maximum of Gaussians (3)

Solve Exercise 3.1 from Lecture 5 in lecture notes [LN]. You will find the definitions and context there.
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7 Lower bound for the maximum of Gaussians (3)

Show that if Z1, . . . , Zn
i.i.d.∼ N (0, 1), one has E[maxj∈[n] Zj ] ⩾ c

√
log(n+ 1) for some constant c > 0.
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8 Left tail of χ2 is lighter than its right tail (2)

Show that for any selection of signs (s1, . . . , sn) ∈ {−1, 1}n, the “generalized χ2
n” random variable∑

j∈[n] sjZ
2
j admits the same (right) tail bound as the bound we derived for the actual χ2

n: w.p. 1−δ,∑
j∈[n]

Z2
j ≲

√
n log(δ−1) + log(δ−1).

You might argue by examining the left tail of Z2 ∼ χ2
1 and showing that its “lighter” than the right

tail, by comparing the MGF for Z2 and −Z2.
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9 Moment bound under the Bernstein assumption (2)

Let Z1, . . . , Zn be independent with E[Zj ] = 0, E[Z2
j ] = σ2

j , and |Zj | ⩽ B a.s. Using the Bernstein
inequality we proved (or will soon prove) in the class, show that for p ⩾ 1, Sn :=

∑
j∈[n] Zj satisfies

∥Sn∥Lp ≲

p
∑
j∈[n]

σ2
j

1/2

+ pB.
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10 Moment bound for the maximum of subgaussian variables (2)

Let X1, . . . , Xn satisfy E[Xj ] = 0, ∥Xj∥ψ2 ⩽ σj . Show that for p ⩾ 1, Mn := maxj∈[n]Xj satisfies

∥Mn∥Lp ≲ max
j∈[n]

σj
√
p log(n+ 1).
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11 Optimality of the Hoeffding lemma (2+1)

Solve Exercise 1.3 from Lecture 2 in [LN]. To get all 3 points, use the method of extreme points.
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12 Orlicz norms I (2)

Solve Exercises 2.1–2.2 from Lecture 3 in [LN]. You will find the definitions and context therein.
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13 Orlicz norms II (2)

Solve Exercises 3.1–3.2 from Lecture 3 in [LN]. You will find the definitions and context therein.
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14 Hamburger moment problem (2)

Solve Exercise 4.1 from Lecture 2 in [LN]. You will find the definitions and context therein.
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15 Polynomial with independent Gaussian coefficients (3)

I encountered this hidden gem as Eq. (1.43) in A. Nemirovski’s lectures https://www2.isye.gatech.
edu/~nemirovs/Lect_SaintFlour.pdf. Let Zk ∼ N (0, 1) i.i.d., and consider the stochastic process

Xt =
∑
k∈[n]

Zkt
k, t ∈ [0, 1].

Show that with probability at least 1− δ,

sup
t∈[0,1]

|Xt| ≲
√

n log(n/δ).

Explain why this bound must be tight up to a log-factor. Hint: use the extreme points method.
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16 Planar Venn diagrams (4)

A (congruent) Venn diagram in Rd for n sets is the following object: you choose a “template” A ⊂ Rd
and n locations a1, ..., an ∈ Rd such that the shifted sets A1, A2, ..., An, where Aj := {a+aj , a ∈ A},
intersect in all possible combinations: for any subset of indices I ⊆ {1, 2, ..., n}, the set AI := ∩i∈IAi
must be nonempty. Prove the following result:

One cannot draw a planar (d = 2) Venn diagram for n ⩾ 4 sets by shifting a circle.

Use Euler’s formula: any planar graph with V vertices, E edges, and F faces (subsets in
which R2 is partitioned by the graph) satisfies

V − E + F = 2.

For example, in the case of a triangle V = E = 3 and F = 2.
Hint: estimate Vn, En, Fn in a Venn diagram for n sets in terms of Vn−1, En−1, Fn−1 respectively.
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